Image Analysis Technology in the Detection of Particle Size Distribution and the Activity Effect of Low‐Silicon Copper Tailings

尾矿 计算机科学 粒径 粒度分布 粒子(生态学) 材料科学 冶金 地质学 海洋学 古生物学
作者
Yu-Xiang Zhao,Xinzhong Liu,Biwen Liu,Qian Zhang,Dongdong Huan,Chenhui Qiu
出处
期刊:Wireless Communications and Mobile Computing [Wiley]
卷期号:2021 (1)
标识
DOI:10.1155/2021/9057264
摘要

To speed up the comprehensive utilization and treatment of copper tailings, the digital image processing technology is proposed in this study to detect the low‐silicon copper tailings (LSCT) using a scanning electron microscope (SEM), and the particle size distribution (PSD) and the activity of LSCT are analysed under the action of mechanical force. Firstly, the current status and application of copper tailings are introduced, and the influence of the particle size of LSCT on its practical application performance is explained. Secondly, the LSCT SEM image target recognition model is designed based on the convolutional neural network (CNN), and the model parameters and the reference CNN are selected. Finally, the experimental process is designed, a SEM image data set of LSCT is prepared, the model is trained through the training set, and the image recognition test is performed on the produced data set. The experimental results show that when the number of iterations of the CNN is 10, the accuracy of model recognition can be guaranteed. After the action of mechanical force, the PSD of LSCT is mainly concentrated at 1 μ m~100 μ m; that around 1.4 μ m~10 μ m is the largest, and the PSD of LSCT around 1.4 μ m increases with the increase of action time of mechanical force, but the PSD of the LSCT begins to increase when the grinding time exceeds 150 minutes, and the activity of LSCT reaches the maximum (75.545%) at 150 minutes. The average accuracy of SEM image detection of the model is 86.97%, and the model based on DenseNet shows better recognition accuracy than other models. This study provides a reference for analysing the PSD of LSCT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钟美莲发布了新的文献求助10
1秒前
3秒前
4秒前
红宝石设计局完成签到,获得积分10
6秒前
7秒前
沉默完成签到,获得积分10
12秒前
小诗发布了新的文献求助30
12秒前
14秒前
16秒前
烟花应助Hayat采纳,获得10
18秒前
难过大神完成签到,获得积分10
19秒前
cdercder应助Rjy采纳,获得10
19秒前
21秒前
21秒前
彭于晏应助dasfdufos采纳,获得10
22秒前
mo发布了新的文献求助20
22秒前
马凯完成签到,获得积分10
22秒前
22秒前
小诗完成签到,获得积分20
22秒前
Baekhyun完成签到,获得积分10
22秒前
loin发布了新的文献求助30
26秒前
刻苦鼠标发布了新的文献求助20
26秒前
Orange应助科研通管家采纳,获得10
29秒前
元谷雪应助科研通管家采纳,获得10
29秒前
29秒前
香蕉觅云应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得30
29秒前
科研通AI5应助科研通管家采纳,获得200
29秒前
栀晴应助科研通管家采纳,获得20
29秒前
Owen应助Zurlliant采纳,获得10
29秒前
bkagyin应助科研通管家采纳,获得10
29秒前
29秒前
大个应助凌兰采纳,获得10
32秒前
dasfdufos发布了新的文献求助10
33秒前
搜集达人应助jari采纳,获得10
34秒前
zhuangzhu发布了新的文献求助10
34秒前
35秒前
yat完成签到 ,获得积分10
36秒前
所所应助carbon-dots采纳,获得10
36秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738291
求助须知:如何正确求助?哪些是违规求助? 3281789
关于积分的说明 10026606
捐赠科研通 2998667
什么是DOI,文献DOI怎么找? 1645317
邀请新用户注册赠送积分活动 782748
科研通“疑难数据库(出版商)”最低求助积分说明 749901