Deep learning in multimodal remote sensing data fusion: A comprehensive review

传感器融合 计算机科学 数据科学 瓶颈 领域(数学) 深度学习 人工智能 地理空间分析 大数据 合成孔径雷达 模式 机器学习 数据挖掘 遥感 地理 社会学 嵌入式系统 纯数学 社会科学 数学
作者
Jiaxin Li,Danfeng Hong,Lianru Gao,Jing Yao,Ke Zheng,Bing Zhang,Jocelyn Chanussot
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:112: 102926-102926 被引量:289
标识
DOI:10.1016/j.jag.2022.102926
摘要

With the extremely rapid advances in remote sensing (RS) technology, a great quantity of Earth observation (EO) data featuring considerable and complicated heterogeneity are readily available nowadays, which renders researchers an opportunity to tackle current geoscience applications in a fresh way. With the joint utilization of EO data, much research on multimodal RS data fusion has made tremendous progress in recent years, yet these developed traditional algorithms inevitably meet the performance bottleneck due to the lack of the ability to comprehensively analyze and interpret strongly heterogeneous data. Hence, this non-negligible limitation further arouses an intense demand for an alternative tool with powerful processing competence. Deep learning (DL), as a cutting-edge technology, has witnessed remarkable breakthroughs in numerous computer vision tasks owing to its impressive ability in data representation and reconstruction. Naturally, it has been successfully applied to the field of multimodal RS data fusion, yielding great improvement compared with traditional methods. This survey aims to present a systematic overview in DL-based multimodal RS data fusion. More specifically, some essential knowledge about this topic is first given. Subsequently, a literature survey is conducted to analyze the trends of this field. Some prevalent sub-fields in the multimodal RS data fusion are then reviewed in terms of the to-be-fused data modalities, i.e., spatiospectral, spatiotemporal, light detection and ranging-optical, synthetic aperture radar-optical, and RS-Geospatial Big Data fusion. Furthermore, We collect and summarize some valuable resources for the sake of the development in multimodal RS data fusion. Finally, the remaining challenges and potential future directions are highlighted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MAOJCFK发布了新的文献求助10
1秒前
1秒前
faiting完成签到,获得积分10
1秒前
勤奋的天亦完成签到,获得积分10
1秒前
kiyo_v完成签到,获得积分10
1秒前
邓代容发布了新的文献求助10
2秒前
无私的芹应助yuelsy0117采纳,获得10
2秒前
ZHYChen完成签到,获得积分10
2秒前
huk发布了新的文献求助10
2秒前
ZJJ静完成签到,获得积分10
3秒前
董竹君完成签到,获得积分10
3秒前
俭朴的天曼完成签到,获得积分10
3秒前
Lucas应助顺心的翠丝采纳,获得10
4秒前
李田田完成签到,获得积分20
4秒前
4秒前
义气乐儿发布了新的文献求助10
4秒前
宅心仁厚完成签到 ,获得积分10
5秒前
5秒前
骑猪看日落完成签到,获得积分10
5秒前
冥冥之极为昭昭完成签到,获得积分10
5秒前
繁荣的又夏完成签到,获得积分10
6秒前
6秒前
嗝嗝完成签到,获得积分10
6秒前
7秒前
Windsyang完成签到,获得积分10
7秒前
cs完成签到,获得积分10
8秒前
wanci应助小蜜蜂采纳,获得10
8秒前
拉瓦锡不爱化学完成签到,获得积分10
9秒前
三笠完成签到,获得积分10
10秒前
cmuwinni完成签到,获得积分10
10秒前
爆米花应助ddffgz采纳,获得30
11秒前
在水一方应助YY采纳,获得10
11秒前
实验耗材发布了新的文献求助10
11秒前
孤独听雨的猫完成签到 ,获得积分10
11秒前
Andy.发布了新的文献求助10
11秒前
李大侠完成签到,获得积分10
11秒前
陌路完成签到,获得积分10
12秒前
12秒前
12秒前
南亭完成签到,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015859
求助须知:如何正确求助?哪些是违规求助? 3555835
关于积分的说明 11318981
捐赠科研通 3288954
什么是DOI,文献DOI怎么找? 1812355
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027