Deep learning in multimodal remote sensing data fusion: A comprehensive review

传感器融合 计算机科学 数据科学 瓶颈 领域(数学) 深度学习 人工智能 地理空间分析 大数据 合成孔径雷达 模式 机器学习 数据挖掘 遥感 地理 嵌入式系统 社会学 纯数学 社会科学 数学
作者
Jiaxin Li,Danfeng Hong,Lianru Gao,Jing Yao,Ke Zheng,Bing Zhang,Jocelyn Chanussot
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:112: 102926-102926 被引量:260
标识
DOI:10.1016/j.jag.2022.102926
摘要

With the extremely rapid advances in remote sensing (RS) technology, a great quantity of Earth observation (EO) data featuring considerable and complicated heterogeneity are readily available nowadays, which renders researchers an opportunity to tackle current geoscience applications in a fresh way. With the joint utilization of EO data, much research on multimodal RS data fusion has made tremendous progress in recent years, yet these developed traditional algorithms inevitably meet the performance bottleneck due to the lack of the ability to comprehensively analyze and interpret strongly heterogeneous data. Hence, this non-negligible limitation further arouses an intense demand for an alternative tool with powerful processing competence. Deep learning (DL), as a cutting-edge technology, has witnessed remarkable breakthroughs in numerous computer vision tasks owing to its impressive ability in data representation and reconstruction. Naturally, it has been successfully applied to the field of multimodal RS data fusion, yielding great improvement compared with traditional methods. This survey aims to present a systematic overview in DL-based multimodal RS data fusion. More specifically, some essential knowledge about this topic is first given. Subsequently, a literature survey is conducted to analyze the trends of this field. Some prevalent sub-fields in the multimodal RS data fusion are then reviewed in terms of the to-be-fused data modalities, i.e., spatiospectral, spatiotemporal, light detection and ranging-optical, synthetic aperture radar-optical, and RS-Geospatial Big Data fusion. Furthermore, We collect and summarize some valuable resources for the sake of the development in multimodal RS data fusion. Finally, the remaining challenges and potential future directions are highlighted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等风的人发布了新的文献求助10
1秒前
魁梧的盼望完成签到 ,获得积分10
1秒前
英俊的铭应助jane采纳,获得10
3秒前
7秒前
魔幻东冬完成签到,获得积分10
8秒前
科研通AI2S应助小米粒采纳,获得10
10秒前
tuanheqi应助优雅亦丝采纳,获得300
11秒前
高挑的寒松完成签到 ,获得积分10
12秒前
22秒前
23秒前
25秒前
asdfgh完成签到,获得积分20
26秒前
27秒前
妩媚的初晴完成签到,获得积分10
27秒前
哈哈哈哈发布了新的文献求助10
29秒前
乐乐应助美汁源采纳,获得10
32秒前
志不在科研应助王紫绯采纳,获得10
33秒前
36秒前
Lawyer完成签到 ,获得积分10
37秒前
今晚吃什么完成签到,获得积分10
38秒前
38秒前
39秒前
39秒前
灵巧的以亦完成签到 ,获得积分10
40秒前
guoxihan完成签到 ,获得积分10
41秒前
婷123完成签到 ,获得积分10
42秒前
43秒前
44秒前
applepie完成签到,获得积分10
44秒前
sssss发布了新的文献求助10
44秒前
47秒前
杳鸢应助January采纳,获得30
49秒前
钻头药水发布了新的文献求助10
50秒前
舒适店员发布了新的文献求助10
50秒前
yunchen发布了新的文献求助10
53秒前
WANG发布了新的文献求助10
54秒前
舒适店员完成签到 ,获得积分10
1分钟前
dada完成签到 ,获得积分10
1分钟前
科研通AI2S应助55采纳,获得10
1分钟前
嗯哼应助科研通管家采纳,获得100
1分钟前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1200
Effect of CPAP therapy on BP in patients with OSA a worldwide individual patient data meta-analysis 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3365891
求助须知:如何正确求助?哪些是违规求助? 2986117
关于积分的说明 8721589
捐赠科研通 2668734
什么是DOI,文献DOI怎么找? 1461433
科研通“疑难数据库(出版商)”最低求助积分说明 676323
邀请新用户注册赠送积分活动 667725