Neurofeedback Training With an Electroencephalogram-Based Brain-Computer Interface Enhances Emotion Regulation

神经反射 脑电图 脑-机接口 心理学 接口(物质) 感觉运动节律 情绪识别 认知心理学 大脑活动与冥想 计算机科学 神经科学 最大气泡压力法 气泡 并行计算
作者
Weichen Huang,Wei Wu,Molly V. Lucas,Haiyun Huang,Zhenfu Wen,Yuanqing Li
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:14 (2): 998-1011 被引量:24
标识
DOI:10.1109/taffc.2021.3134183
摘要

Emotion regulation plays a vital role in human beings daily lives by helping them deal with social problems and protects mental and physical health. However, objective evaluation of the efficacy of emotion regulation and assessment of the improvement in emotion regulation ability at the individual level remain challenging. In this study, we leveraged neurofeedback training to design a real-time EEG-based brain-computer interface (BCI) system for users to effectively regulate their emotions. Twenty healthy subjects performed 10 BCI-based neurofeedback training sessions to regulate their emotion towards a specific emotional state (positive, negative, or neutral), while their EEG signals were analyzed in real time via machine learning to predict their emotional states. The prediction results were presented as feedback on the screen to inform the subjects of their immediate emotional state, based on which the subjects could update their strategies for emotion regulation. The experimental results indicated that the subjects improved their ability to regulate these emotions through our BCI neurofeedback training. Further EEG-based spectrum analysis revealed how each emotional state was related to specific EEG patterns, which were progressively enhanced through long-term training. These results together suggested that long-term EEG-based neurofeedback training could be a promising tool for helping people with emotional or mental disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大个应助umi采纳,获得10
2秒前
Mars_X完成签到,获得积分10
3秒前
所所应助不点采纳,获得10
3秒前
陈霸下。完成签到,获得积分10
4秒前
江河湖库考试辅导完成签到 ,获得积分10
4秒前
susu完成签到 ,获得积分10
5秒前
huazhangchina完成签到,获得积分10
5秒前
5秒前
7秒前
7秒前
Binggo完成签到,获得积分10
7秒前
7秒前
高兴的向秋完成签到,获得积分20
7秒前
8秒前
8秒前
咿呀咿呀完成签到 ,获得积分10
8秒前
JamesPei应助YOBO采纳,获得10
9秒前
9秒前
Hello应助Atan采纳,获得10
9秒前
852应助开心蘑菇采纳,获得10
10秒前
10秒前
彩色纹发布了新的文献求助10
11秒前
12秒前
小芦铃发布了新的文献求助10
13秒前
俭朴冬瓜发布了新的文献求助10
13秒前
忧郁丹彤发布了新的文献求助10
13秒前
Stove发布了新的文献求助10
14秒前
14秒前
星辰大海应助冲冲采纳,获得10
14秒前
nini发布了新的文献求助10
16秒前
iwonder完成签到 ,获得积分20
16秒前
老实的半山完成签到,获得积分10
17秒前
18秒前
淡然柚子发布了新的文献求助10
18秒前
宇宙星河发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
132发布了新的文献求助20
22秒前
一蓑烟雨完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4921521
求助须知:如何正确求助?哪些是违规求助? 4192717
关于积分的说明 13022872
捐赠科研通 3964097
什么是DOI,文献DOI怎么找? 2172871
邀请新用户注册赠送积分活动 1190512
关于科研通互助平台的介绍 1099711