SiO2 template-modified and Cu-doped BiVO4 with high visible-light photocatalytic performance: Preparation and first-principles study

光催化 材料科学 兴奋剂 可见光谱 降级(电信) 载流子 带隙 动力学 化学工程 光电子学 光化学 纳米技术 催化作用 电子工程 有机化学 工程类 物理 化学 冶金 量子力学
作者
Yaxi Tian,Dongyun Que,Rongfeng Guan,Wenyan Shi
出处
期刊:Materials today communications [Elsevier]
卷期号:32: 103954-103954 被引量:9
标识
DOI:10.1016/j.mtcomm.2022.103954
摘要

Cu-BiVO4 photocatalysts with an excellent visible light response were successfully fabricated by modification with a SiO2 template and Cu doping. The SiO2 hard template changes the morphology of BiVO4 from rod to sphere. The structure, chemical composition, and optical and photoelectrochemical properties of the photocatalysts were characterized. The photocatalytic activity was measured through RhB degradation under visible light irradiation. The results indicate that copper is successfully doped in the form of Cu2+ and Cu+. Copper can be used as electron capture traps, which reduces the carrier recombination rate. Compared with other reports, Cu doping is found to greatly improve the ability of BiVO4 to degrade RhB. The crystal phase of BiVO4 is not significantly changed due to Cu doping, and the optimal doping amount is 10%. The RhB degradation rate of the optimal 10% Cu-BiVO4 sample reaches 99.7% within 70 min. Cu-BiVO4 exhibits stable degradation activity, and the photocatalytic kinetics follows a pseudo-first-order equation. ·O2- and h+ play dominant roles in RhB degradation by Cu-BiVO4. The mechanism for the enhancement of the BiVO4 photocatalytic ability was researched with first-principles calculations. The results of band structure and density of states calculations reveal that Cu doping not only promotes electron transitions but also acts as an electron trap to reduce the recombination rate and enhance the efficiency of separation and transfer of photogenerated charge carriers. This work highlights a new way to improve the photocatalytic performance and applications of BiVO4.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助zyh945采纳,获得10
刚刚
1秒前
可爱的函函应助精明云朵采纳,获得10
2秒前
2秒前
Lemon完成签到 ,获得积分10
2秒前
mxq发布了新的文献求助10
2秒前
2秒前
dwl发布了新的文献求助10
4秒前
bkagyin应助于源鸿采纳,获得20
4秒前
打打应助小谢采纳,获得10
4秒前
顺行完成签到 ,获得积分20
4秒前
万能图书馆应助小木土采纳,获得20
5秒前
搜集达人应助超帅的南霜采纳,获得10
5秒前
5秒前
烟花应助SSS采纳,获得10
5秒前
充电宝应助dingsw采纳,获得10
6秒前
Lucas应助南栀倾寒采纳,获得10
6秒前
6秒前
6秒前
6秒前
zyw完成签到,获得积分10
6秒前
小二郎应助冰勾板勾采纳,获得10
7秒前
8秒前
xs应助luojh03采纳,获得10
8秒前
清爽鸡翅发布了新的文献求助10
9秒前
南敏株发布了新的文献求助10
9秒前
ss发布了新的文献求助10
9秒前
9秒前
搜集达人应助家伟采纳,获得10
10秒前
恰个泡芙完成签到 ,获得积分10
11秒前
11秒前
wdd发布了新的文献求助30
11秒前
11秒前
FashionBoy应助小思怡采纳,获得10
12秒前
12秒前
三杠发布了新的文献求助10
12秒前
脑洞疼应助要减肥的牛马采纳,获得10
13秒前
13秒前
13秒前
fang完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3513930
求助须知:如何正确求助?哪些是违规求助? 3096253
关于积分的说明 9230934
捐赠科研通 2791392
什么是DOI,文献DOI怎么找? 1531785
邀请新用户注册赠送积分活动 711625
科研通“疑难数据库(出版商)”最低求助积分说明 706929