受体
细胞生物学
三元络合物
化学
生物物理学
生物
生物化学
酶
作者
Steven C. Wilson,Nathanael Caveney,Michelle Yen,Christoph Pollmann,Xinyu Xiang,Kevin M. Jude,Maximillian Hafer,Naotaka Tsutsumi,Jacob Piehler,K. Christopher García
出处
期刊:Nature
[Springer Nature]
日期:2022-07-21
卷期号:609 (7927): 622-629
被引量:25
标识
DOI:10.1038/s41586-022-05116-y
摘要
Abstract The IL-17 family of cytokines and receptors have central roles in host defence against infection and development of inflammatory diseases 1 . The compositions and structures of functional IL-17 family ligand–receptor signalling assemblies remain unclear. IL-17E (also known as IL-25) is a key regulator of type 2 immune responses and driver of inflammatory diseases, such as allergic asthma, and requires both IL-17 receptor A (IL-17RA) and IL-17RB to elicit functional responses 2 . Here we studied IL-25–IL-17RB binary and IL-25–IL-17RB–IL-17RA ternary complexes using a combination of cryo-electron microscopy, single-molecule imaging and cell-based signalling approaches. The IL-25–IL-17RB–IL-17RA ternary signalling assembly is a C2-symmetric complex in which the IL-25–IL-17RB homodimer is flanked by two ‘wing-like’ IL-17RA co-receptors through a ‘tip-to-tip’ geometry that is the key receptor–receptor interaction required for initiation of signal transduction. IL-25 interacts solely with IL-17RB to allosterically promote the formation of the IL-17RB–IL-17RA tip-to-tip interface. The resulting large separation between the receptors at the membrane-proximal level may reflect proximity constraints imposed by the intracellular domains for signalling. Cryo-electron microscopy structures of IL-17A–IL-17RA and IL-17A–IL-17RA–IL-17RC complexes reveal that this tip-to-tip architecture is a key organizing principle of the IL-17 receptor family. Furthermore, these studies reveal dual actions for IL-17RA sharing among IL-17 cytokine complexes, by either directly engaging IL-17 cytokines or alternatively functioning as a co-receptor.
科研通智能强力驱动
Strongly Powered by AbleSci AI