Hyperspectral Image Classification Based on Multiscale Cross-Branch Response and Second-Order Channel Attention

计算机科学 模式识别(心理学) 高光谱成像 卷积神经网络 人工智能 背景(考古学) 特征(语言学) 特征提取 残余物 卷积(计算机科学) 频道(广播) 块(置换群论) 水准点(测量) 算法 人工神经网络 数学 电信 生物 几何学 哲学 古生物学 语言学 地理 大地测量学
作者
Wenbing Wang,Huidong Chang,Weitong Zhang,Jie Feng,Yangyang Li,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16
标识
DOI:10.1109/tgrs.2022.3184117
摘要

Recently, most convolutional neural network-based methods use convolutional kernels of fixed size to extract features, which ignore the inherent spatial structure information of ground objects and lose spatial details. In addition, rough first-order statistics is not enough to capture subtle differences between different categories and extract non local context information. To address these issues, a hyperspectral image (HSI) classification method based on multi-scale cross-branch response and second-order channel attention (MCRSCA) is proposed in this paper. Firstly, a multi-scale cross-branch response module (MCBR) is proposed, which uses convolution kernels of different sizes for feature extraction. It adds and concatenates the features of different scales respectively to obtain rich and complementary spatial context information. Then, element multiplication and element addition are performed on the fused multi-scale features to promote the propagation of the multi-scale information and enhance the nonlinear expression ability. Next, the second-order channel attention module (SOCA) is designed to interact the channel information through the feature covariance matrix to obtain the long-term dependence between channels. This module pays more attention to the significant channels and suppresses the redundant channels. Finally, the residual connection is used to embed MCBR and SOCA into the residual block to improve the gradient back propagation and accelerate the training process. Experiments on four commonly used HSI benchmark datasets show that the results of MCRSCA is competitive compared with other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Luyao完成签到,获得积分10
1秒前
1秒前
1秒前
马甲完成签到,获得积分10
1秒前
科研通AI5应助xdf采纳,获得10
1秒前
周周完成签到,获得积分10
1秒前
Holybot完成签到,获得积分10
1秒前
3秒前
只道寻常完成签到,获得积分10
3秒前
fleee完成签到,获得积分10
3秒前
swsx1317发布了新的文献求助10
3秒前
4秒前
雪白涵山完成签到,获得积分20
4秒前
liao完成签到 ,获得积分10
4秒前
hu970发布了新的文献求助30
4秒前
科研小白发布了新的文献求助20
5秒前
SciGPT应助白小白采纳,获得10
5秒前
shuxi完成签到,获得积分10
6秒前
liuwei发布了新的文献求助10
6秒前
yxf完成签到,获得积分20
6秒前
7秒前
十一完成签到,获得积分10
7秒前
7秒前
穆萝完成签到,获得积分10
7秒前
Jenny应助Eva采纳,获得10
7秒前
bkagyin应助17808352679采纳,获得10
7秒前
俭朴夜雪发布了新的文献求助10
8秒前
8秒前
林上草应助123采纳,获得10
8秒前
科目三应助AoiNG采纳,获得10
8秒前
9秒前
orixero应助雪白涵山采纳,获得20
9秒前
123发布了新的文献求助10
10秒前
ajing完成签到,获得积分10
10秒前
537完成签到,获得积分10
10秒前
10秒前
11秒前
清醒的ZY完成签到,获得积分10
11秒前
yxf发布了新的文献求助10
12秒前
大个应助叫滚滚采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762