A novel model predictive control strategy for multi-time scale optimal scheduling of integrated energy system

模型预测控制 调度(生产过程) 计算机科学 公平份额计划 最优控制 数学优化 实时计算 控制工程 工程类 控制(管理) 地铁列车时刻表 人工智能 数学 操作系统
作者
Keyong Hu,Ben Wang,Shixun Cao,Wenjuan Li,Lidong Wang
出处
期刊:Energy Reports [Elsevier]
卷期号:8: 7420-7433 被引量:11
标识
DOI:10.1016/j.egyr.2022.05.184
摘要

Model predictive control is one of the key technologies to realize the multi-time scale optimal scheduling of integrated energy system. However, the traditional centralized model predictive control has the high model order, a large amount of online calculation and is not easy to expand, it is not suitable for the optimal scheduling of an integrated energy system with many distributed units. In this paper, a multi-time scale optimal scheduling method of integrated energy system based on distributed model predictive control is proposed, which realizes the flexible scheduling of the integrated energy system through the coordination and cooperation of various subsystems. Firstly, the detailed models of various generation equipment are established according to the four energy forms of cold, heat, electricity and gas. Then, a multi-time scale optimal scheduling is divided based on three scales: day-ahead long time scale scheduling in 1 h, intra-day predictive control in 15 min and real-time adjustment in 5 min. Next, during the day-ahead scheduling and intra-day rolling optimization, we establish an optimization model based on the best economic operation of the system, the daily operating cost of the system and the minimum penalty cost of start-up and shutdown. During the real-time adjustment, a distributed model predictive control method is proposed to decompose the overall optimization problem of the integrated energy system. Each subsystem estimates the state according to the input sequence of other subsystems at the previous time and optimizes its own performance index. Finally, the case shows that the model predictive control strategy proposed in this paper can increase the speed of optimal operation by about 15% and reduce the cost of optimal operation by about 3.8% compared with the traditional centralized model predictive control method, which not only improves the control performance of system operation, but also improves the economy of system operation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助卡古一采纳,获得10
刚刚
李健应助RavEn采纳,获得10
1秒前
彪壮的锦程完成签到,获得积分10
1秒前
HonglinGao发布了新的文献求助10
1秒前
1秒前
2秒前
lin发布了新的文献求助10
3秒前
WZ发布了新的文献求助10
3秒前
烟花应助落寞的蜡烛采纳,获得10
4秒前
4秒前
4秒前
4秒前
5秒前
Rita发布了新的文献求助10
5秒前
5秒前
Z赵发布了新的文献求助10
5秒前
星宿陨发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
AgnesT应助callmefather采纳,获得10
5秒前
6秒前
kiterunner完成签到,获得积分10
6秒前
柯基小胖发布了新的文献求助10
6秒前
Lucas应助舒心的板栗采纳,获得10
7秒前
一口一个小面包完成签到,获得积分10
7秒前
7秒前
8秒前
HIT_C完成签到 ,获得积分10
8秒前
yiduo发布了新的文献求助10
8秒前
yy完成签到,获得积分10
8秒前
Hello应助雨安采纳,获得10
9秒前
9秒前
10秒前
10秒前
SciGPT应助麻糬采纳,获得10
11秒前
ymbb发布了新的文献求助10
11秒前
爆米花应助WZ采纳,获得10
12秒前
hh完成签到,获得积分10
12秒前
天天发布了新的文献求助20
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Oligonucleotide Synthesis: a Practical Approach 500
Plant–Pollinator Interactions: From Specialization to Generalization 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3589616
求助须知:如何正确求助?哪些是违规求助? 3157911
关于积分的说明 9517962
捐赠科研通 2860977
什么是DOI,文献DOI怎么找? 1572123
邀请新用户注册赠送积分活动 737702
科研通“疑难数据库(出版商)”最低求助积分说明 722522