Serum metabolomics study of anxiety disorder patients based on LC-MS

焦虑 代谢组学 广泛性焦虑症 焦虑症 病态的 代谢紊乱 逻辑回归 临床心理学 医学 心理学 内科学 精神科 生物信息学 生物
作者
Hongqian Kui,Haihua Su,Qian Wang,Chuanxin Liu,Yubo Li,Yao Tian,Jiao Kong,Guijiang Sun,Jianmei Huang
出处
期刊:Clinica Chimica Acta [Elsevier]
卷期号:533: 131-143 被引量:8
标识
DOI:10.1016/j.cca.2022.06.022
摘要

In the current environment of increasing social pressure, anxiety disorder has become a kind of health problem that needs to be solved urgently. However, the pathological mechanism of anxiety is still unclear, the classification of clinical diagnosis and symptoms is complex, and there is still a lack of biomarkers that can be identified and judged.This study used LC-MS and non-targeted metabolomics to analyze the clinically collected plasma of 18 samples from anxiety disorder patients and 31 samples from healthy people to screen differential metabolites and perform subsequent metabolic pathway analysis. Binary Logistic regression was used to construct the anxiety disorder diagnosis prediction model and evaluate the prediction efficacy.The results showed that 22 metabolites were disturbed in the plasma of anxiety patients compared with healthy people. These metabolites mainly participate in 6 metabolic pathways. The combined diagnostic factors 4-Acetamidobutanoate, 3-Hydroxysebacic acid, and Cytosine were used to construct the diagnosis prediction model. The prediction probability of the model is 91.8%, the Youden index is 0.889, the sensitivity is 0.889, and the specificity is 1.000, so the prediction effect is good.This study preliminarily analyzed and explored the differences between plasma samples from patients with anxiety disorder and healthy individuals, increased the types of potential biomarkers for anxiety disorder, and provided a valuable reference for subsequent research related to anxiety disorder.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
康舟发布了新的文献求助10
刚刚
斯人完成签到,获得积分10
刚刚
1秒前
Millennial完成签到,获得积分10
1秒前
2秒前
2秒前
txco完成签到 ,获得积分10
3秒前
包包完成签到,获得积分10
4秒前
liuxh123完成签到,获得积分10
4秒前
cy发布了新的文献求助30
4秒前
4秒前
psydaodao完成签到,获得积分0
4秒前
zzzlk完成签到,获得积分20
5秒前
打打应助不要引力采纳,获得10
6秒前
乐观的砖头完成签到,获得积分10
6秒前
lhh0529yt发布了新的文献求助10
6秒前
毛豆完成签到,获得积分20
6秒前
7秒前
qiuqiu完成签到 ,获得积分10
7秒前
共享精神应助H-China采纳,获得10
7秒前
8秒前
cuzn完成签到,获得积分10
8秒前
善学以致用应助灰灰采纳,获得10
9秒前
小二郎应助小羊采纳,获得10
10秒前
10秒前
10秒前
美好斓发布了新的文献求助10
10秒前
11秒前
11秒前
小沉沉发布了新的文献求助10
12秒前
drjj发布了新的文献求助10
12秒前
刺猬完成签到,获得积分10
12秒前
陶一二完成签到,获得积分10
12秒前
12秒前
Sahar发布了新的文献求助10
13秒前
材小料完成签到,获得积分10
13秒前
13秒前
13秒前
斯人发布了新的文献求助10
14秒前
喂喂醒醒晚安了完成签到,获得积分10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143215
求助须知:如何正确求助?哪些是违规求助? 2794316
关于积分的说明 7810682
捐赠科研通 2450507
什么是DOI,文献DOI怎么找? 1303891
科研通“疑难数据库(出版商)”最低求助积分说明 627126
版权声明 601386