Multi-agent deep reinforcement learning for adaptive coordinated metro service operations with flexible train composition

强化学习 人工神经网络 计算机科学 马尔可夫决策过程 理论(学习稳定性) 功能(生物学) 分布式计算 服务(商务) 过程(计算) 控制(管理) 人工智能 运筹学 马尔可夫过程 工程类 机器学习 操作系统 经济 经济 统计 生物 进化生物学 数学
作者
Cheng-shuo Ying,Andy H.F. Chow,Hoa T.M. Nguyen,Kwai‐Sang Chin
出处
期刊:Transportation Research Part B-methodological [Elsevier BV]
卷期号:161: 36-59 被引量:33
标识
DOI:10.1016/j.trb.2022.05.001
摘要

This paper presents an adaptive control system for coordinated metro operations with flexible train composition by using a multi-agent deep reinforcement learning (MADRL) approach. The control problem is formulated as a Markov decision process (MDP) with multiple agents regulating different service lines in a metro network with passenger transfer. To ensure the overall computational effectiveness and stability of the control system, we adopt an actor–critic reinforcement learning framework in which each control agent is associated with a critic function for estimating future system states and an actor function deriving local operational decisions. The critics and actors in the MADRL are represented by multi-layer artificial neural networks (ANNs). A multi-agent deep deterministic policy gradient (MADDPG) algorithm is developed for training the actor and critic ANNs through successive simulated transitions over the entire metro network. The developed framework is tested with a real-world scenario in Bakerloo and Victoria Lines of London Underground, UK. Experiment results demonstrate that the proposed method can outperform previous centralized optimization and distributed control approaches in terms of solution quality and performance achieved. Further analysis shows the merits of MADRL for coordinated service regulation with flexible train composition. This study contributes to real-time coordinated metro network services with flexible train composition and advanced optimization techniques. • An adaptive rail transit control system with passengers’ transfers and flexible train composition. • A novel modeling and optimization framework based on multi-agent deep reinforcement learning. • A computational framework with ‘decentralized execution and centralized training’ for effectiveness and stability. • Case study demonstrating the system efficiency and computational effectiveness of proposed algorithm over previous methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Debbie完成签到 ,获得积分10
1秒前
Owen应助奋斗亦竹采纳,获得10
1秒前
1秒前
kekeji发布了新的文献求助10
3秒前
4秒前
TRY完成签到,获得积分10
4秒前
5秒前
李健应助善良语蓉采纳,获得10
5秒前
丁元英发布了新的文献求助10
5秒前
6789发布了新的文献求助10
6秒前
Suki发布了新的文献求助10
6秒前
领导范儿应助白日梦采纳,获得10
6秒前
6秒前
7秒前
遇上就这样吧应助内向萃采纳,获得200
7秒前
赘婿应助坚强怀绿采纳,获得10
7秒前
7秒前
周周周完成签到,获得积分20
9秒前
老豆芽24完成签到,获得积分10
9秒前
9秒前
10秒前
媛媛种论文完成签到,获得积分20
10秒前
BX发布了新的文献求助10
10秒前
11秒前
李繁蕊发布了新的文献求助10
11秒前
12秒前
等等完成签到,获得积分10
12秒前
Endymion发布了新的文献求助10
13秒前
天天快乐应助xm采纳,获得10
13秒前
14秒前
科研通AI5应助xhzhao86采纳,获得10
14秒前
研究牲发布了新的文献求助10
15秒前
15秒前
S77发布了新的文献求助10
15秒前
15秒前
科研小白花完成签到,获得积分20
16秒前
观妙散人完成签到,获得积分10
17秒前
白日梦发布了新的文献求助10
18秒前
18秒前
喜糖发布了新的文献求助10
19秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3744718
求助须知:如何正确求助?哪些是违规求助? 3287712
关于积分的说明 10054740
捐赠科研通 3003914
什么是DOI,文献DOI怎么找? 1649258
邀请新用户注册赠送积分活动 785217
科研通“疑难数据库(出版商)”最低求助积分说明 750960