Risk management of supply chain disruptions: An epidemic modeling approach

供应链风险管理 供应链 供应链管理 计算机科学 风险管理 风险分析(工程) 运筹学 业务 数学 服务管理 财务 营销
作者
Niklas Berger,Stefan Schulze-Schwering,Elisa F Long,Stefan Spinler
出处
期刊:European Journal of Operational Research [Elsevier]
卷期号:304 (3): 1036-1051 被引量:36
标识
DOI:10.1016/j.ejor.2022.05.018
摘要

Quality issues in supply networks can adversely affect the performance of suppliers and their downstream customers. Since suppliers might fail to comply with quality guidelines, decentralized quality controls by each firm in a supply network may be insufficient; thus, a complete network perspective on risk management could help to minimize supply disruptions. Here, we develop a novel modeling framework drawing on epidemiology, to demonstrate how network structure impacts the propagation of quality issues—akin to the spread of an infectious disease. We formulate an SIS model in which nodes represent individual suppliers while directed edges represent the movement of goods between suppliers; these nodes can be either susceptible (S) to or infected (I) by a disruption. Applying the model to 21 real-world networks, we find that a quality issue’s magnitude depends strongly on its origin node and the network archetype. The network’s maximum Authority value—based on the relationship between relevant authoritative nodes and hub nodes— is highly correlated with the extent of a supply disruption in our simulation. We examine different network-level strategies for containing an outbreak and find that improving quality control at critical nodes—those characterized by a high Authority value or customer proximity—is an effective measure. Adjusting the network structure by focusing on an upstream-centric flow of goods, thereby reducing the maximum Authority value, decreases vulnerability to quality issues. Managers can reduce the impact of quality disruptions through a combination of conventional firm-level strategies and novel network risk management strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清秀的以云完成签到,获得积分20
1秒前
猫好好完成签到,获得积分10
2秒前
3秒前
hhzz完成签到,获得积分10
3秒前
3秒前
xhemers完成签到,获得积分10
3秒前
111发布了新的文献求助10
3秒前
4秒前
爱静静应助怡然的莫茗采纳,获得10
5秒前
6秒前
科研通AI5应助清秀的以云采纳,获得30
6秒前
李健的粉丝团团长应助xx采纳,获得10
8秒前
大豪子发布了新的文献求助30
8秒前
李繁蕊发布了新的文献求助10
8秒前
12秒前
12秒前
12秒前
12秒前
橘柚完成签到 ,获得积分10
13秒前
zmmmm发布了新的文献求助10
13秒前
领导范儿应助温言采纳,获得10
13秒前
思源应助OvO采纳,获得10
15秒前
迷糊发布了新的文献求助30
16秒前
LY发布了新的文献求助10
17秒前
zzz完成签到,获得积分10
17秒前
KimJongUn完成签到,获得积分10
17秒前
19秒前
19秒前
zy完成签到,获得积分10
20秒前
开心果子发布了新的文献求助10
20秒前
云痴子完成签到,获得积分10
21秒前
SciGPT应助粥粥采纳,获得10
21秒前
21秒前
21秒前
22秒前
苏源完成签到,获得积分10
22秒前
wu关闭了wu文献求助
22秒前
22秒前
23秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808