Risk management of supply chain disruptions: An epidemic modeling approach

供应链风险管理 供应链 供应链管理 计算机科学 风险管理 风险分析(工程) 运筹学 业务 数学 服务管理 营销 财务
作者
Niklas Berger,Stefan Schulze-Schwering,Elisa F Long,Stefan Spinler
出处
期刊:European Journal of Operational Research [Elsevier]
卷期号:304 (3): 1036-1051 被引量:68
标识
DOI:10.1016/j.ejor.2022.05.018
摘要

Quality issues in supply networks can adversely affect the performance of suppliers and their downstream customers. Since suppliers might fail to comply with quality guidelines, decentralized quality controls by each firm in a supply network may be insufficient; thus, a complete network perspective on risk management could help to minimize supply disruptions. Here, we develop a novel modeling framework drawing on epidemiology, to demonstrate how network structure impacts the propagation of quality issues—akin to the spread of an infectious disease. We formulate an SIS model in which nodes represent individual suppliers while directed edges represent the movement of goods between suppliers; these nodes can be either susceptible (S) to or infected (I) by a disruption. Applying the model to 21 real-world networks, we find that a quality issue’s magnitude depends strongly on its origin node and the network archetype. The network’s maximum Authority value—based on the relationship between relevant authoritative nodes and hub nodes— is highly correlated with the extent of a supply disruption in our simulation. We examine different network-level strategies for containing an outbreak and find that improving quality control at critical nodes—those characterized by a high Authority value or customer proximity—is an effective measure. Adjusting the network structure by focusing on an upstream-centric flow of goods, thereby reducing the maximum Authority value, decreases vulnerability to quality issues. Managers can reduce the impact of quality disruptions through a combination of conventional firm-level strategies and novel network risk management strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
俭朴发布了新的文献求助10
1秒前
柒安完成签到 ,获得积分10
1秒前
pluto应助XCDF1采纳,获得10
1秒前
2秒前
2秒前
Jaden完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
思源应助含糊的灵雁采纳,获得10
5秒前
buno应助科研通管家采纳,获得10
5秒前
MYFuture应助科研通管家采纳,获得10
6秒前
Cmqq应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
buno应助科研通管家采纳,获得10
6秒前
6秒前
Cmqq应助科研通管家采纳,获得10
6秒前
Hanoi347应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
MYFuture应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
buno应助科研通管家采纳,获得10
6秒前
MYFuture应助科研通管家采纳,获得10
6秒前
spc68应助科研通管家采纳,获得10
6秒前
MYFuture应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
动听的笑南完成签到,获得积分10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
gaigaiguo@163完成签到,获得积分10
7秒前
科研通AI6应助孙文霞采纳,获得10
7秒前
尊敬泽洋发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605558
求助须知:如何正确求助?哪些是违规求助? 4690129
关于积分的说明 14862351
捐赠科研通 4701941
什么是DOI,文献DOI怎么找? 2542175
邀请新用户注册赠送积分活动 1507804
关于科研通互助平台的介绍 1472113