Artificial neural network approach for multiphase segmentation of battery electrode nano-CT images

计算机科学 人工智能 分割 卷积神经网络 人工神经网络 深度学习 模式识别(心理学) 学习迁移 电池(电) 体素 基本事实 市场细分 机器学习 业务 物理 量子力学 营销 功率(物理)
作者
Zeliang Su,Étienne Decencière,Tuan‐Tu Nguyen,Kaoutar El-Amiry,Vincent De Andrade,Alejandro A. Franco,Arnaud Demortière
出处
期刊:npj computational materials [Springer Nature]
卷期号:8 (1) 被引量:40
标识
DOI:10.1038/s41524-022-00709-7
摘要

Abstract The segmentation of tomographic images of the battery electrode is a crucial processing step, which will have an additional impact on the results of material characterization and electrochemical simulation. However, manually labeling X-ray CT images (XCT) is time-consuming, and these XCT images are generally difficult to segment with histographical methods. We propose a deep learning approach with an asymmetrical depth encode-decoder convolutional neural network (CNN) for real-world battery material datasets. This network achieves high accuracy while requiring small amounts of labeled data and predicts a volume of billions voxel within few minutes. While applying supervised machine learning for segmenting real-world data, the ground truth is often absent. The results of segmentation are usually qualitatively justified by visual judgement. We try to unravel this fuzzy definition of segmentation quality by identifying the uncertainty due to the human bias diluted in the training data. Further CNN trainings using synthetic data show quantitative impact of such uncertainty on the determination of material’s properties. Nano-XCT datasets of various battery materials have been successfully segmented by training this neural network from scratch. We will also show that applying the transfer learning, which consists of reusing a well-trained network, can improve the accuracy of a similar dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gengfu完成签到,获得积分10
1秒前
123发布了新的文献求助10
2秒前
sean给sean的求助进行了留言
3秒前
4秒前
5秒前
6秒前
海上生明月完成签到,获得积分10
7秒前
7秒前
334niubi666发布了新的文献求助10
9秒前
欧阳发布了新的文献求助10
11秒前
Zeeshan完成签到,获得积分10
12秒前
13秒前
13秒前
11完成签到,获得积分10
13秒前
寒冷平蓝发布了新的文献求助10
15秒前
16秒前
18秒前
安静的瑾瑜完成签到 ,获得积分10
18秒前
MOMO完成签到 ,获得积分10
18秒前
18秒前
19秒前
Kris发布了新的文献求助10
22秒前
fountainli发布了新的文献求助50
23秒前
疯少发布了新的文献求助10
24秒前
25秒前
CY完成签到,获得积分10
25秒前
深情安青应助2024论文计划采纳,获得30
26秒前
SciGPT应助迅速灵竹采纳,获得10
26秒前
27秒前
小扬仔21发布了新的文献求助10
28秒前
科研通AI2S应助吴雨木目采纳,获得10
28秒前
YHQ完成签到,获得积分10
29秒前
年年年年发布了新的文献求助10
30秒前
31秒前
Zeeshan关注了科研通微信公众号
31秒前
abrakadabra完成签到,获得积分10
32秒前
Lucas应助Nevaeh采纳,获得10
34秒前
34秒前
Jau完成签到,获得积分0
34秒前
班里发布了新的文献求助10
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308460
求助须知:如何正确求助?哪些是违规求助? 2941800
关于积分的说明 8505877
捐赠科研通 2616792
什么是DOI,文献DOI怎么找? 1429755
科研通“疑难数据库(出版商)”最低求助积分说明 663888
邀请新用户注册赠送积分活动 648999