内含子
转录组
RNA剪接
计算生物学
生物
选择性拼接
遗传学
RNA序列
基因
生物信息学
外显子
基因表达
核糖核酸
作者
Yijun Meng,Xiaoxia Ma,Jie Li,Hidetaka Ito,Krystyna Oracz,Jiahui Cai,Chaogang Shao
标识
DOI:10.1016/j.jplph.2022.153632
摘要
The importance of the evolutionarily conserved Argonaute (AGO) proteins has been well recognized for their involvement in the RNA interference pathways. Recent discoveries in animals demonstrated that AGOs also participate in alternative splicing (AS). Motivated by the question whether the AGO proteins are also functional in RNA splicing in plants, we searched for the introns excised through an AGO-dependent manner in Arabidopsis (Arabidopsis thaliana). RNA sequencing (RNA-seq) data analysis uncovered hundreds of the introns up- or down-regulated in the ago1 and ago4 mutants, respectively. For different genes, AGOs might play either a positive or a negative role in intron excision, which was further validated by reverse transcription-polymerase chain reaction (RT-PCR). Some introns were specifically regulated by one of the AGO proteins, while some were regulated by both AGOs. Besides, a large portion of the AGO-dependent introns were organ-specifically regulated. RNA immunoprecipitation combined with high-throughput sequencing (RIP-seq) revealed that both AGOs preferentially bound to the intronic regions, supporting their high intron binding affinities. Immunoprecipitation followed by mass spectrometry (IP-MS) was performed to identify the proteins potentially interacting with the two AGOs. Six novel interactors (two interacting with AGO1 and four with both AGOs) involved in mRNA binding were uncovered, which might facilitate AGO-intron recognition. Analysis of the RNA-seq data from the rice (Oryza sativa) ago18 mutants revealed that hundreds of the introns were expressed in an AGO18-dependent manner. In summary, our results point to the novel role of the plant AGOs in intron splicing, paving a way for further studies on the mechanisms underlying AGO-mediated RNA splicing.
科研通智能强力驱动
Strongly Powered by AbleSci AI