已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Online Entropy-Based DDoS Flooding Attack Detection System With Dynamic Threshold

计算机科学 服务拒绝攻击 应用层DDoS攻击 熵(时间箭头) 网络数据包 计算机安全 计算机网络 服务器 入侵检测系统 洪水(心理学) 互联网 实时计算 心理学 量子力学 物理 万维网 心理治疗师
作者
Loïc D. Tsobdjou,Samuel Pierre,Alejandro Quintero
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:19 (2): 1679-1689 被引量:29
标识
DOI:10.1109/tnsm.2022.3142254
摘要

Distributed denial of service attacks are cyber-attacks that target the availability of servers. As a result, legitimate users no longer have access to the service. This can have a negative impact on an organization, such as lack of reputation and economic losses. Therefore, it is important to design defense mechanisms against these attacks. There are systems for detecting distributed denial of service attacks in the literature, which still have various shortcomings. Some of these systems detect the presence of attack traffic without identifying the attack packets or flows. Others use static thresholds and therefore cannot adapt to changes in legitimate traffic. In this paper, we propose an online system that aims to detect flooding attacks in a short timeframe and a client–server environment. The proposed detection system consists of five modules, namely features extraction and connections construction, suspicious activity detection, attack connections detection, alert generation and threshold update. The suspicious activity detection module calculates the normalized Shannon entropy by considering the source Internet Protocol address as a random variable. Suspicious activity is detected when the computed entropy is below a threshold. The threshold calculation is based on Chebyshev's theorem. We propose a dynamic threshold algorithm to track changes in legitimate traffic. We evaluate the proposed system through simulations and using a publicly available dataset. Compared to other similar works, the proposed detection system has a better performance in terms of detection rate, false positive rate, precision and overall accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助JazzWon采纳,获得10
1秒前
1秒前
ZZZ发布了新的文献求助10
2秒前
sally_5202完成签到 ,获得积分10
4秒前
科研小白完成签到,获得积分10
5秒前
7秒前
8秒前
wing00024应助盛夏如花采纳,获得30
12秒前
13秒前
科研达人发布了新的文献求助100
14秒前
修炼哥发布了新的文献求助10
14秒前
合适的梦菡完成签到,获得积分10
17秒前
hyyy完成签到 ,获得积分10
17秒前
桐桐应助wanna采纳,获得10
18秒前
英俊的铭应助妮妮采纳,获得10
18秒前
yunidesuuu发布了新的文献求助10
18秒前
ceeray23发布了新的文献求助111
21秒前
21秒前
淡定胡萝卜完成签到,获得积分10
22秒前
李健应助hyw010724采纳,获得10
22秒前
23秒前
25秒前
小鱼际,发布了新的文献求助10
26秒前
26秒前
星海完成签到 ,获得积分10
28秒前
28秒前
730完成签到 ,获得积分10
29秒前
温暖枫叶发布了新的文献求助10
29秒前
斯文败类应助科研通管家采纳,获得20
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
30秒前
bkagyin应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
SYLH应助科研通管家采纳,获得10
30秒前
duanhuiyuan应助科研通管家采纳,获得10
30秒前
杳鸢应助科研通管家采纳,获得20
30秒前
杳鸢应助科研通管家采纳,获得20
30秒前
xioabu发布了新的文献求助10
33秒前
730关注了科研通微信公众号
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466610
求助须知:如何正确求助?哪些是违规求助? 3059468
关于积分的说明 9066340
捐赠科研通 2749950
什么是DOI,文献DOI怎么找? 1508779
科研通“疑难数据库(出版商)”最低求助积分说明 697059
邀请新用户注册赠送积分活动 696883