An Online Entropy-Based DDoS Flooding Attack Detection System With Dynamic Threshold

计算机科学 服务拒绝攻击 应用层DDoS攻击 熵(时间箭头) 网络数据包 计算机安全 计算机网络 服务器 入侵检测系统 洪水(心理学) 互联网 实时计算 心理学 物理 量子力学 万维网 心理治疗师
作者
Loïc D. Tsobdjou,Samuel Pierre,Alejandro Quintero
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:19 (2): 1679-1689 被引量:33
标识
DOI:10.1109/tnsm.2022.3142254
摘要

Distributed denial of service attacks are cyber-attacks that target the availability of servers. As a result, legitimate users no longer have access to the service. This can have a negative impact on an organization, such as lack of reputation and economic losses. Therefore, it is important to design defense mechanisms against these attacks. There are systems for detecting distributed denial of service attacks in the literature, which still have various shortcomings. Some of these systems detect the presence of attack traffic without identifying the attack packets or flows. Others use static thresholds and therefore cannot adapt to changes in legitimate traffic. In this paper, we propose an online system that aims to detect flooding attacks in a short timeframe and a client–server environment. The proposed detection system consists of five modules, namely features extraction and connections construction, suspicious activity detection, attack connections detection, alert generation and threshold update. The suspicious activity detection module calculates the normalized Shannon entropy by considering the source Internet Protocol address as a random variable. Suspicious activity is detected when the computed entropy is below a threshold. The threshold calculation is based on Chebyshev's theorem. We propose a dynamic threshold algorithm to track changes in legitimate traffic. We evaluate the proposed system through simulations and using a publicly available dataset. Compared to other similar works, the proposed detection system has a better performance in terms of detection rate, false positive rate, precision and overall accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Yantuobio完成签到,获得积分10
刚刚
1秒前
1秒前
llq发布了新的文献求助10
1秒前
NexusExplorer应助贾硕士采纳,获得10
1秒前
乌鸦坐飞机完成签到,获得积分10
1秒前
2秒前
2秒前
胖头鱼发布了新的文献求助10
2秒前
科研通AI6应助三石呦423采纳,获得50
2秒前
11关注了科研通微信公众号
2秒前
candleshi发布了新的文献求助10
2秒前
luo发布了新的文献求助10
3秒前
3秒前
3秒前
忧伤的书白完成签到,获得积分10
3秒前
3秒前
赤壁完成签到,获得积分10
4秒前
4秒前
我是老大应助薯片采纳,获得10
4秒前
不可靠大人完成签到,获得积分10
5秒前
121发布了新的文献求助10
5秒前
5秒前
5秒前
iNk应助滚滚采纳,获得10
6秒前
无风发布了新的文献求助10
6秒前
fei应助生信好难采纳,获得20
6秒前
6秒前
大锤完成签到,获得积分10
6秒前
zzzz完成签到,获得积分20
7秒前
钟昊发布了新的文献求助10
7秒前
烟花应助xianbei采纳,获得10
7秒前
7秒前
7秒前
冬青ouo发布了新的文献求助10
8秒前
liwenhao应助qing采纳,获得10
8秒前
8秒前
乔乔兔发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285