An Online Entropy-Based DDoS Flooding Attack Detection System With Dynamic Threshold

计算机科学 服务拒绝攻击 应用层DDoS攻击 熵(时间箭头) 网络数据包 计算机安全 计算机网络 服务器 入侵检测系统 洪水(心理学) 互联网 实时计算 心理学 物理 量子力学 万维网 心理治疗师
作者
Loïc D. Tsobdjou,Samuel Pierre,Alejandro Quintero
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:19 (2): 1679-1689 被引量:33
标识
DOI:10.1109/tnsm.2022.3142254
摘要

Distributed denial of service attacks are cyber-attacks that target the availability of servers. As a result, legitimate users no longer have access to the service. This can have a negative impact on an organization, such as lack of reputation and economic losses. Therefore, it is important to design defense mechanisms against these attacks. There are systems for detecting distributed denial of service attacks in the literature, which still have various shortcomings. Some of these systems detect the presence of attack traffic without identifying the attack packets or flows. Others use static thresholds and therefore cannot adapt to changes in legitimate traffic. In this paper, we propose an online system that aims to detect flooding attacks in a short timeframe and a client–server environment. The proposed detection system consists of five modules, namely features extraction and connections construction, suspicious activity detection, attack connections detection, alert generation and threshold update. The suspicious activity detection module calculates the normalized Shannon entropy by considering the source Internet Protocol address as a random variable. Suspicious activity is detected when the computed entropy is below a threshold. The threshold calculation is based on Chebyshev's theorem. We propose a dynamic threshold algorithm to track changes in legitimate traffic. We evaluate the proposed system through simulations and using a publicly available dataset. Compared to other similar works, the proposed detection system has a better performance in terms of detection rate, false positive rate, precision and overall accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Fanxq完成签到,获得积分10
2秒前
2秒前
wanci应助xx采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得30
3秒前
浮游应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得20
3秒前
小马甲应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
灰灰应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
TTT发布了新的文献求助10
4秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
灰灰应助科研通管家采纳,获得30
6秒前
Mic应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
在水一方应助时舒采纳,获得10
6秒前
6秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536699
求助须知:如何正确求助?哪些是违规求助? 4624302
关于积分的说明 14591473
捐赠科研通 4564867
什么是DOI,文献DOI怎么找? 2501941
邀请新用户注册赠送积分活动 1480687
关于科研通互助平台的介绍 1451955