An Online Entropy-Based DDoS Flooding Attack Detection System With Dynamic Threshold

计算机科学 服务拒绝攻击 应用层DDoS攻击 熵(时间箭头) 网络数据包 计算机安全 计算机网络 服务器 入侵检测系统 洪水(心理学) 互联网 实时计算 心理学 量子力学 物理 万维网 心理治疗师
作者
Loïc D. Tsobdjou,Samuel Pierre,Alejandro Quintero
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:19 (2): 1679-1689 被引量:33
标识
DOI:10.1109/tnsm.2022.3142254
摘要

Distributed denial of service attacks are cyber-attacks that target the availability of servers. As a result, legitimate users no longer have access to the service. This can have a negative impact on an organization, such as lack of reputation and economic losses. Therefore, it is important to design defense mechanisms against these attacks. There are systems for detecting distributed denial of service attacks in the literature, which still have various shortcomings. Some of these systems detect the presence of attack traffic without identifying the attack packets or flows. Others use static thresholds and therefore cannot adapt to changes in legitimate traffic. In this paper, we propose an online system that aims to detect flooding attacks in a short timeframe and a client–server environment. The proposed detection system consists of five modules, namely features extraction and connections construction, suspicious activity detection, attack connections detection, alert generation and threshold update. The suspicious activity detection module calculates the normalized Shannon entropy by considering the source Internet Protocol address as a random variable. Suspicious activity is detected when the computed entropy is below a threshold. The threshold calculation is based on Chebyshev's theorem. We propose a dynamic threshold algorithm to track changes in legitimate traffic. We evaluate the proposed system through simulations and using a publicly available dataset. Compared to other similar works, the proposed detection system has a better performance in terms of detection rate, false positive rate, precision and overall accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爆米花应助刁弘睿采纳,获得10
1秒前
1秒前
1秒前
缥缈海云完成签到,获得积分10
1秒前
2秒前
斯文败类应助沙场秋点兵采纳,获得10
3秒前
123完成签到,获得积分10
3秒前
4秒前
无辜问玉发布了新的文献求助10
4秒前
4秒前
5秒前
谨慎乐安发布了新的文献求助10
5秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
缥缈海云发布了新的文献求助10
8秒前
mylaodao发布了新的文献求助10
8秒前
9秒前
chen完成签到,获得积分10
10秒前
拾贰月发布了新的文献求助10
10秒前
俊杰完成签到,获得积分10
11秒前
阿菜完成签到,获得积分10
11秒前
wanghao完成签到,获得积分20
11秒前
善学以致用应助songjiatian采纳,获得10
12秒前
13秒前
13秒前
善学以致用应助追忆淮采纳,获得10
14秒前
Hello应助靓丽凝海采纳,获得10
14秒前
14秒前
毛笑冉完成签到,获得积分10
14秒前
fine发布了新的文献求助10
14秒前
15秒前
无辜问玉完成签到,获得积分10
16秒前
16秒前
CodeCraft应助SJW采纳,获得10
17秒前
指尖的阿里阿德涅完成签到,获得积分10
17秒前
July完成签到,获得积分10
17秒前
abcdqqqqqqqqqqqq应助大橘子采纳,获得10
18秒前
18秒前
芋圆完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425