Unified medical image segmentation by learning from uncertainty in an end-to-end manner

计算机科学 分割 人工智能 图像分割 端到端原则 最终用户 图像(数学) 死胡同 计算机视觉 数学 万维网 几何学 流量(数学)
作者
Tang Pin,Pinli Yang,Dong Nie,Xi Wu,Jiliu Zhou,Yan Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:241: 108215-108215 被引量:86
标识
DOI:10.1016/j.knosys.2022.108215
摘要

Automatic segmentation is a fundamental task in computer-assisted medical image analysis. Convolutional neural networks (CNNs) have been widely used for medical image segmentation tasks. Currently, most deep learning-based methods output a probability map and use a hand-crafted threshold to generate the final segmentation result, while how confident the network is of the probability map remains unclear. The segmentation result can be quite unreliable even though the probability is much higher than the threshold since the uncertainty of the probability can also be high. Moreover, boundary information loss caused by consecutive pooling layers and convolution strides makes the object’s boundary in segmentation even more unreliable. In this paper, we propose an uncertainty guided network referred to as UG-Net for automatic medical image segmentation. Different from previous methods, our UG-Net can learn from and contend with uncertainty by itself in an end-to-end manner. Specifically, UG-Net consists of three parts: a coarse segmentation module (CSM) to obtain the coarse segmentation and the uncertainty map, an uncertainty guided module (UGM) to leverage the obtained uncertainty map in an end-to-end manner, and a feature refinement module (FRM) embedded with several dual attention (DAT) blocks to generate the final segmentations. In addition, to formulate a unified segmentation network and extract richer context information, a multi-scale feature extractor (MFE) is inserted between the encoder and decoder of the CSM. Experimental results show that the proposed UG-Net outperforms the state-of-the-art methods on nasopharyngeal carcinoma (NPC) segmentation, lung segmentation, optic disc segmentation and retinal vessel detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叮咚发布了新的文献求助10
刚刚
Hello应助黎L采纳,获得10
2秒前
深情安青应助鄢亮采纳,获得10
2秒前
鱼鱼鱼KYSL完成签到 ,获得积分10
3秒前
wuyuan完成签到,获得积分10
4秒前
小达人完成签到 ,获得积分10
5秒前
薰衣草发布了新的文献求助10
7秒前
7秒前
8秒前
平淡鞋子给平淡鞋子的求助进行了留言
10秒前
cxy完成签到 ,获得积分10
10秒前
11秒前
11秒前
在水一方应助活泼的飞扬采纳,获得10
13秒前
隐形曼青应助lu采纳,获得10
13秒前
14秒前
水心发布了新的文献求助50
14秒前
15秒前
Ya发布了新的文献求助10
16秒前
17秒前
18秒前
liudongling完成签到,获得积分10
19秒前
科研通AI2S应助破晓星采纳,获得10
20秒前
20秒前
善学以致用应助lzcnextdoor采纳,获得10
20秒前
21秒前
紧张的新烟完成签到,获得积分10
22秒前
22秒前
鄢亮发布了新的文献求助10
23秒前
ghq7724发布了新的文献求助10
25秒前
秀丽帅哥发布了新的文献求助10
26秒前
26秒前
JamesPei应助水心采纳,获得10
28秒前
xlarrow发布了新的文献求助30
32秒前
ljr65完成签到 ,获得积分10
34秒前
英姑应助行路难采纳,获得10
35秒前
科研通AI2S应助lu采纳,获得10
35秒前
鄢亮完成签到,获得积分10
36秒前
djx123发布了新的文献求助10
37秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288121
求助须知:如何正确求助?哪些是违规求助? 4440061
关于积分的说明 13823852
捐赠科研通 4322320
什么是DOI,文献DOI怎么找? 2372504
邀请新用户注册赠送积分活动 1367975
关于科研通互助平台的介绍 1331592