Unified medical image segmentation by learning from uncertainty in an end-to-end manner

计算机科学 分割 人工智能 尺度空间分割 图像分割 基于分割的对象分类 联营 端到端原则 卷积神经网络 模式识别(心理学) 背景(考古学) 特征(语言学) 深度学习 计算机视觉 哲学 古生物学 生物 语言学
作者
Tang Pin,Pinli Yang,Dong Nie,Xi Wu,Jiliu Zhou,Yan Wang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:241: 108215-108215 被引量:67
标识
DOI:10.1016/j.knosys.2022.108215
摘要

Automatic segmentation is a fundamental task in computer-assisted medical image analysis. Convolutional neural networks (CNNs) have been widely used for medical image segmentation tasks. Currently, most deep learning-based methods output a probability map and use a hand-crafted threshold to generate the final segmentation result, while how confident the network is of the probability map remains unclear. The segmentation result can be quite unreliable even though the probability is much higher than the threshold since the uncertainty of the probability can also be high. Moreover, boundary information loss caused by consecutive pooling layers and convolution strides makes the object’s boundary in segmentation even more unreliable. In this paper, we propose an uncertainty guided network referred to as UG-Net for automatic medical image segmentation. Different from previous methods, our UG-Net can learn from and contend with uncertainty by itself in an end-to-end manner. Specifically, UG-Net consists of three parts: a coarse segmentation module (CSM) to obtain the coarse segmentation and the uncertainty map, an uncertainty guided module (UGM) to leverage the obtained uncertainty map in an end-to-end manner, and a feature refinement module (FRM) embedded with several dual attention (DAT) blocks to generate the final segmentations. In addition, to formulate a unified segmentation network and extract richer context information, a multi-scale feature extractor (MFE) is inserted between the encoder and decoder of the CSM. Experimental results show that the proposed UG-Net outperforms the state-of-the-art methods on nasopharyngeal carcinoma (NPC) segmentation, lung segmentation, optic disc segmentation and retinal vessel detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wxZeng完成签到,获得积分10
1秒前
迷失的悠悠完成签到,获得积分10
1秒前
小马哥完成签到,获得积分10
1秒前
吕圆圆圆啊完成签到,获得积分10
3秒前
务实鞅完成签到 ,获得积分10
3秒前
影流完成签到,获得积分10
4秒前
4秒前
乖猫要努力完成签到,获得积分10
5秒前
烟花应助壮观梦易采纳,获得10
5秒前
skinnylove完成签到,获得积分10
6秒前
缓慢的王完成签到,获得积分10
7秒前
闪闪的斑马完成签到,获得积分10
8秒前
华仔应助mouset270采纳,获得30
8秒前
毅诚菌完成签到,获得积分10
9秒前
Akim应助跳跃馒头采纳,获得10
10秒前
盼盼完成签到,获得积分10
10秒前
领导范儿应助科研通管家采纳,获得30
10秒前
Singularity应助科研通管家采纳,获得10
11秒前
风清扬应助科研通管家采纳,获得10
11秒前
愉快寄真完成签到,获得积分10
11秒前
苗玉完成签到,获得积分10
11秒前
huangqqk发布了新的文献求助10
13秒前
shineshine完成签到 ,获得积分10
14秒前
caozhi完成签到,获得积分10
15秒前
瀚泛完成签到,获得积分10
16秒前
CAOHOU应助大意的罡采纳,获得10
17秒前
18秒前
yunna_ning完成签到,获得积分0
18秒前
大鱼一条完成签到 ,获得积分10
19秒前
勤奋的天亦完成签到,获得积分10
19秒前
jane完成签到 ,获得积分10
20秒前
陈宗琴完成签到,获得积分10
20秒前
g7001完成签到,获得积分10
21秒前
老实的抽屉完成签到,获得积分10
22秒前
居崽完成签到 ,获得积分10
23秒前
23秒前
23秒前
韩哈哈完成签到,获得积分10
23秒前
木雨亦潇潇完成签到,获得积分10
25秒前
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960190
求助须知:如何正确求助?哪些是违规求助? 3506348
关于积分的说明 11129231
捐赠科研通 3238527
什么是DOI,文献DOI怎么找? 1789763
邀请新用户注册赠送积分活动 871900
科研通“疑难数据库(出版商)”最低求助积分说明 803095