Accurate and Reliable Prediction of Relative Ligand Binding Potency in Prospective Drug Discovery by Way of a Modern Free-Energy Calculation Protocol and Force Field

稳健性(进化) 化学 药物发现 假阳性悖论 配体效率 力场(虚构) 小分子 配体(生物化学) 计算化学 生化工程 组合化学 纳米技术 计算机科学 机器学习 人工智能 工程类 受体 基因 生物化学 材料科学
作者
Lingle Wang,Yujie Wu,Yuqing Deng,Byungchan Kim,Levi Pierce,Goran Krilov,Dmitry Lupyan,Shaughnessy Robinson,Markus K. Dahlgren,Jeremy R. Greenwood,Donna L. Romero,C. E. Masse,Jennifer L. Knight,Thomas Steinbrecher,Thijs Beuming,Wolfgang Damm,Ed Harder,Woody Sherman,Mark Brewer,Ron Wester,Mark A. Murcko,Leah L. Frye,Ramy Farid,Lin Teng,David L. Mobley,William L. Jorgensen,B. J. Berne,Richard A. Friesner,Robert Abel
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:137 (7): 2695-2703 被引量:1203
标识
DOI:10.1021/ja512751q
摘要

Designing tight-binding ligands is a primary objective of small-molecule drug discovery. Over the past few decades, free-energy calculations have benefited from improved force fields and sampling algorithms, as well as the advent of low-cost parallel computing. However, it has proven to be challenging to reliably achieve the level of accuracy that would be needed to guide lead optimization (∼5× in binding affinity) for a wide range of ligands and protein targets. Not surprisingly, widespread commercial application of free-energy simulations has been limited due to the lack of large-scale validation coupled with the technical challenges traditionally associated with running these types of calculations. Here, we report an approach that achieves an unprecedented level of accuracy across a broad range of target classes and ligands, with retrospective results encompassing 200 ligands and a wide variety of chemical perturbations, many of which involve significant changes in ligand chemical structures. In addition, we have applied the method in prospective drug discovery projects and found a significant improvement in the quality of the compounds synthesized that have been predicted to be potent. Compounds predicted to be potent by this approach have a substantial reduction in false positives relative to compounds synthesized on the basis of other computational or medicinal chemistry approaches. Furthermore, the results are consistent with those obtained from our retrospective studies, demonstrating the robustness and broad range of applicability of this approach, which can be used to drive decisions in lead optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
捏捏捏发布了新的文献求助10
1秒前
英姑应助嗳7采纳,获得10
1秒前
1秒前
强壮的丸子完成签到,获得积分10
1秒前
CipherSage应助黄卡卡采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
wanci应助王小花采纳,获得10
3秒前
4秒前
sunny完成签到,获得积分10
4秒前
5秒前
5秒前
gdh发布了新的文献求助10
6秒前
6秒前
江辰汐月发布了新的文献求助10
6秒前
6秒前
Tian发布了新的文献求助10
6秒前
mm发布了新的文献求助10
6秒前
研友_852G6L完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
wangyup发布了新的文献求助10
8秒前
9秒前
乐乐应助皮念寒采纳,获得10
9秒前
神仙姐姐发布了新的文献求助10
10秒前
SYLH应助Chris采纳,获得10
11秒前
11秒前
12秒前
江辰汐月完成签到,获得积分10
14秒前
wangyup完成签到,获得积分20
14秒前
14秒前
Distance发布了新的文献求助10
14秒前
十七应助Geodada采纳,获得10
15秒前
田様应助专一的雅青采纳,获得10
16秒前
smm发布了新的文献求助10
16秒前
JC发布了新的文献求助10
17秒前
Mistletoe完成签到 ,获得积分10
17秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470584
求助须知:如何正确求助?哪些是违规求助? 3063615
关于积分的说明 9084626
捐赠科研通 2754092
什么是DOI,文献DOI怎么找? 1511215
邀请新用户注册赠送积分活动 698347
科研通“疑难数据库(出版商)”最低求助积分说明 698221