粗集
相似性(几何)
关系(数据库)
功能(生物学)
集合(抽象数据类型)
特征(语言学)
计算机科学
相似性度量
度量(数据仓库)
数据挖掘
粒度计算
基础(拓扑)
基于案例的推理
数学
算法
人工智能
模式识别(心理学)
理论计算机科学
图像(数学)
数学分析
语言学
哲学
进化生物学
生物
程序设计语言
作者
Yaima Filiberto,Yailé Caballero Mota,Rafael Larrúa Quevedo,Rafael Bello
标识
DOI:10.1109/isda.2010.5687091
摘要
In this paper we propose a method to build similarity relations into extended Rough Set Theory. Similarity is estimated using ideas from Granular computing and Case-base reasoning. A new measure is introduced in order to compute the quality of the similarity relation. This work presents a study of a case of a similarity relation based on a global similarity function between two objects, this function includes the weights for each feature and local functions to calculate how the values of a given feature are similar. This approach was proved in the function approximation problem. Promissory results are obtained in several experiments.
科研通智能强力驱动
Strongly Powered by AbleSci AI