Physiological time-series analysis using approximate entropy and sample entropy

样本熵 近似熵 熵(时间箭头) 数学 时间序列 统计 计算机科学 量子力学 物理
作者
Joshua Richman,J. Randall Moorman
出处
期刊:American Journal of Physiology-heart and Circulatory Physiology [American Physical Society]
卷期号:278 (6): H2039-H2049 被引量:5787
标识
DOI:10.1152/ajpheart.2000.278.6.h2039
摘要

Entropy, as it relates to dynamical systems, is the rate of information production. Methods for estimation of the entropy of a system represented by a time series are not, however, well suited to analysis of the short and noisy data sets encountered in cardiovascular and other biological studies. Pincus introduced approximate entropy (ApEn), a set of measures of system complexity closely related to entropy, which is easily applied to clinical cardiovascular and other time series. ApEn statistics, however, lead to inconsistent results. We have developed a new and related complexity measure, sample entropy (SampEn), and have compared ApEn and SampEn by using them to analyze sets of random numbers with known probabilistic character. We have also evaluated cross-ApEn and cross-SampEn, which use cardiovascular data sets to measure the similarity of two distinct time series. SampEn agreed with theory much more closely than ApEn over a broad range of conditions. The improved accuracy of SampEn statistics should make them useful in the study of experimental clinical cardiovascular and other biological time series.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
Aurora发布了新的文献求助30
3秒前
yu发布了新的文献求助10
3秒前
3秒前
温暖芸完成签到,获得积分10
3秒前
wbp31发布了新的文献求助10
4秒前
ding应助独特的春采纳,获得10
4秒前
4秒前
mengzhe完成签到,获得积分10
4秒前
CodeCraft应助MY采纳,获得10
4秒前
5秒前
Holland应助默默的依云采纳,获得10
5秒前
5秒前
可靠豌豆发布了新的文献求助10
5秒前
SciGPT应助haaaz采纳,获得10
5秒前
温暖芸发布了新的文献求助10
7秒前
健忘曼彤完成签到,获得积分10
7秒前
8秒前
赘婿应助研友_Z72O4n采纳,获得10
8秒前
mellow343完成签到,获得积分10
9秒前
学渣本渣完成签到,获得积分10
10秒前
z11发布了新的文献求助10
10秒前
大模型应助欢喜的大山采纳,获得10
10秒前
10秒前
11秒前
yangyang完成签到,获得积分10
11秒前
11秒前
王若安给王若安的求助进行了留言
12秒前
12秒前
zp完成签到,获得积分10
12秒前
haaaz完成签到,获得积分10
13秒前
popo完成签到,获得积分10
13秒前
14秒前
backback完成签到,获得积分10
14秒前
14秒前
情怀应助忧心的棉花糖采纳,获得10
15秒前
郑雪红发布了新的文献求助10
15秒前
紫色翡翠完成签到,获得积分10
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Homolytic deamination of amino-alcohols 1000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3728757
求助须知:如何正确求助?哪些是违规求助? 3273785
关于积分的说明 9983412
捐赠科研通 2989116
什么是DOI,文献DOI怎么找? 1640181
邀请新用户注册赠送积分活动 779094
科研通“疑难数据库(出版商)”最低求助积分说明 747961