An ant colony optimization technique for solving min–max Multi-Depot Vehicle Routing Problem

计算机科学 车辆路径问题 不确定性算法 数学优化 蚁群优化算法 水准点(测量) 布线(电子设计自动化) 线性规划 班级(哲学) 算法 数学 人工智能 计算机网络 大地测量学 地理
作者
Koushik Venkata Narasimha,Elad H. Kivelevitch,Balaji R. Sharma,Manish Kumar
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:13: 63-73 被引量:111
标识
DOI:10.1016/j.swevo.2013.05.005
摘要

The Multi-Depot Vehicle Routing Problem (MDVRP) involves minimizing the total distance traveled by vehicles originating from multiple depots so that the vehicles together visit the specified customer locations (or cities) exactly once. This problem belongs to a class of Nondeterministic Polynomial Hard (NP Hard) problems and has been used in literature as a benchmark for development of optimization schemes. This article deals with a variant of MDVRP, called min–max MDVRP, where the objective is to minimize the tour-length of the vehicle traveling the longest distance in MDVRP. Markedly different from the traditional MDVRP, min–max MDVRP is of specific significance for time-critical applications such as emergency response, where one wants to minimize the time taken to attend any customer. This article presents an extension of an existing ant-colony technique for solving the Single Depot Vehicle Routing Problem (SDVRP) to solve the multiple depots and min–max variants of the problem. First, the article presents the algorithm that solves the min–max version of SDVRP. Then, the article extends the algorithm for min–max MDVRP using an equitable region partitioning approach aimed at assigning customer locations to depots so that MDVRP is reduced to multiple SDVRPs. The proposed method has been implemented in MATLAB for obtaining the solution for the min–max MDVRP with any number of vehicles and customer locations. A comparative study is carried out to evaluate the proposed algorithm's performance with respect to a currently available Linear Programming (LP) based algorithm in literature in terms of the optimality of solution. Based on simulation studies and statistical evaluations, it has been demonstrated that the ant colony optimization technique proposed in this article leads to more optimal results as compared to the existing LP based method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sawyer完成签到,获得积分10
刚刚
鲤跃完成签到,获得积分10
1秒前
zy完成签到,获得积分10
1秒前
标致水之完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
October发布了新的文献求助10
2秒前
2秒前
倒数第二完成签到,获得积分10
2秒前
ymydasb完成签到,获得积分10
3秒前
jjl完成签到 ,获得积分10
3秒前
呆呆完成签到,获得积分10
3秒前
zhuqian完成签到,获得积分10
3秒前
柚子完成签到 ,获得积分10
3秒前
背后的静柏完成签到,获得积分20
3秒前
夏天完成签到,获得积分20
4秒前
沉积岩完成签到,获得积分0
4秒前
取名叫做利完成签到 ,获得积分10
4秒前
miku1发布了新的文献求助10
4秒前
tr完成签到,获得积分20
4秒前
4秒前
Zzz完成签到,获得积分10
5秒前
zy_完成签到,获得积分10
5秒前
小二郎应助michael采纳,获得30
5秒前
超级的溪灵完成签到,获得积分10
5秒前
大力的安阳完成签到 ,获得积分10
6秒前
嘤鸣完成签到,获得积分10
6秒前
Stephhen完成签到,获得积分10
6秒前
langzi发布了新的文献求助10
7秒前
方俊驰发布了新的文献求助10
7秒前
7秒前
yang完成签到,获得积分10
7秒前
chen完成签到,获得积分10
7秒前
霍健霏完成签到 ,获得积分20
9秒前
喜喜完成签到,获得积分10
9秒前
归途完成签到 ,获得积分10
9秒前
阿越儿呀呀呀完成签到,获得积分10
9秒前
wenhao完成签到,获得积分10
9秒前
wu无完成签到,获得积分10
9秒前
苏信怜完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573719
求助须知:如何正确求助?哪些是违规求助? 4659992
关于积分的说明 14727079
捐赠科研通 4599835
什么是DOI,文献DOI怎么找? 2524518
邀请新用户注册赠送积分活动 1494863
关于科研通互助平台的介绍 1464959