An ant colony optimization technique for solving min–max Multi-Depot Vehicle Routing Problem

计算机科学 车辆路径问题 不确定性算法 数学优化 蚁群优化算法 水准点(测量) 布线(电子设计自动化) 线性规划 班级(哲学) 算法 数学 人工智能 计算机网络 大地测量学 地理
作者
Koushik Venkata Narasimha,Elad H. Kivelevitch,Balaji R. Sharma,Manish Kumar
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:13: 63-73 被引量:111
标识
DOI:10.1016/j.swevo.2013.05.005
摘要

The Multi-Depot Vehicle Routing Problem (MDVRP) involves minimizing the total distance traveled by vehicles originating from multiple depots so that the vehicles together visit the specified customer locations (or cities) exactly once. This problem belongs to a class of Nondeterministic Polynomial Hard (NP Hard) problems and has been used in literature as a benchmark for development of optimization schemes. This article deals with a variant of MDVRP, called min–max MDVRP, where the objective is to minimize the tour-length of the vehicle traveling the longest distance in MDVRP. Markedly different from the traditional MDVRP, min–max MDVRP is of specific significance for time-critical applications such as emergency response, where one wants to minimize the time taken to attend any customer. This article presents an extension of an existing ant-colony technique for solving the Single Depot Vehicle Routing Problem (SDVRP) to solve the multiple depots and min–max variants of the problem. First, the article presents the algorithm that solves the min–max version of SDVRP. Then, the article extends the algorithm for min–max MDVRP using an equitable region partitioning approach aimed at assigning customer locations to depots so that MDVRP is reduced to multiple SDVRPs. The proposed method has been implemented in MATLAB for obtaining the solution for the min–max MDVRP with any number of vehicles and customer locations. A comparative study is carried out to evaluate the proposed algorithm's performance with respect to a currently available Linear Programming (LP) based algorithm in literature in terms of the optimality of solution. Based on simulation studies and statistical evaluations, it has been demonstrated that the ant colony optimization technique proposed in this article leads to more optimal results as compared to the existing LP based method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
Jasper应助半夏采纳,获得10
1秒前
可爱的函函应助ll采纳,获得10
1秒前
倩_完成签到,获得积分10
1秒前
djxdjt完成签到,获得积分10
1秒前
2秒前
2秒前
王秋田应助罗梦芬采纳,获得20
3秒前
3秒前
3秒前
3秒前
熠熠完成签到,获得积分10
3秒前
whynot发布了新的文献求助10
3秒前
3秒前
现代山雁发布了新的文献求助10
4秒前
4秒前
LLLLLL发布了新的文献求助10
4秒前
香蕉觅云应助朝俞采纳,获得10
4秒前
知名不具完成签到 ,获得积分10
5秒前
wei发布了新的文献求助10
6秒前
6秒前
影子发布了新的文献求助10
6秒前
油麦菜完成签到,获得积分10
7秒前
mafukairi发布了新的文献求助30
7秒前
hanlin完成签到,获得积分10
8秒前
利于蓄力发布了新的文献求助10
8秒前
清心发布了新的文献求助10
9秒前
10秒前
10秒前
wanci应助科研废物采纳,获得10
11秒前
隐形曼青应助chen采纳,获得10
11秒前
XRH完成签到,获得积分10
12秒前
12秒前
whynot完成签到,获得积分10
12秒前
彩色阳光完成签到,获得积分10
12秒前
浮游应助任性宇豪采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4884713
求助须知:如何正确求助?哪些是违规求助? 4169858
关于积分的说明 12939294
捐赠科研通 3930463
什么是DOI,文献DOI怎么找? 2156559
邀请新用户注册赠送积分活动 1174925
关于科研通互助平台的介绍 1079670