An ant colony optimization technique for solving min–max Multi-Depot Vehicle Routing Problem

计算机科学 车辆路径问题 不确定性算法 数学优化 蚁群优化算法 水准点(测量) 布线(电子设计自动化) 线性规划 班级(哲学) 算法 数学 人工智能 计算机网络 大地测量学 地理
作者
Koushik Venkata Narasimha,Elad H. Kivelevitch,Balaji R. Sharma,Manish Kumar
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:13: 63-73 被引量:111
标识
DOI:10.1016/j.swevo.2013.05.005
摘要

The Multi-Depot Vehicle Routing Problem (MDVRP) involves minimizing the total distance traveled by vehicles originating from multiple depots so that the vehicles together visit the specified customer locations (or cities) exactly once. This problem belongs to a class of Nondeterministic Polynomial Hard (NP Hard) problems and has been used in literature as a benchmark for development of optimization schemes. This article deals with a variant of MDVRP, called min–max MDVRP, where the objective is to minimize the tour-length of the vehicle traveling the longest distance in MDVRP. Markedly different from the traditional MDVRP, min–max MDVRP is of specific significance for time-critical applications such as emergency response, where one wants to minimize the time taken to attend any customer. This article presents an extension of an existing ant-colony technique for solving the Single Depot Vehicle Routing Problem (SDVRP) to solve the multiple depots and min–max variants of the problem. First, the article presents the algorithm that solves the min–max version of SDVRP. Then, the article extends the algorithm for min–max MDVRP using an equitable region partitioning approach aimed at assigning customer locations to depots so that MDVRP is reduced to multiple SDVRPs. The proposed method has been implemented in MATLAB for obtaining the solution for the min–max MDVRP with any number of vehicles and customer locations. A comparative study is carried out to evaluate the proposed algorithm's performance with respect to a currently available Linear Programming (LP) based algorithm in literature in terms of the optimality of solution. Based on simulation studies and statistical evaluations, it has been demonstrated that the ant colony optimization technique proposed in this article leads to more optimal results as compared to the existing LP based method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助小梁砖家采纳,获得10
刚刚
LSX发布了新的文献求助10
刚刚
刚刚
韶夜阑完成签到,获得积分20
刚刚
大模型应助刘岩松采纳,获得10
刚刚
崔彤完成签到,获得积分10
1秒前
geold发布了新的文献求助10
1秒前
1秒前
开心完成签到,获得积分10
1秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
3秒前
Ava应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
3秒前
赘婿应助积极慕晴采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
暴龙战士完成签到,获得积分10
3秒前
我是老大应助王珂珂采纳,获得10
4秒前
ryx完成签到,获得积分10
4秒前
小巧的牛排完成签到 ,获得积分10
4秒前
慎二完成签到 ,获得积分10
5秒前
JamesPei应助石头采纳,获得10
5秒前
彩色的芝麻完成签到 ,获得积分10
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646180
求助须知:如何正确求助?哪些是违规求助? 4770425
关于积分的说明 15033724
捐赠科研通 4804901
什么是DOI,文献DOI怎么找? 2569318
邀请新用户注册赠送积分活动 1526307
关于科研通互助平台的介绍 1485803