Derivation and Validation of Toxicophores for Mutagenicity Prediction

艾姆斯试验 集合(抽象数据类型) 可靠性(半导体) 数据集 化学 分子描述符 数据挖掘 统计 数量结构-活动关系 计算生物学 计算机科学 数学 立体化学 遗传学 热力学 物理 功率(物理) 生物 程序设计语言 细菌 沙门氏菌
作者
Jeroen Kazius,Ross McGuire,Roberta Bursi
出处
期刊:Journal of Medicinal Chemistry [American Chemical Society]
卷期号:48 (1): 312-320 被引量:560
标识
DOI:10.1021/jm040835a
摘要

Mutagenicity is one of the numerous adverse properties of a compound that hampers its potential to become a marketable drug. Toxic properties can often be related to chemical structure, more specifically, to particular substructures, which are generally identified as toxicophores. A number of toxicophores have already been identified in the literature. This study aims at increasing the current degree of reliability and accuracy of mutagenicity predictions by identifying novel toxicophores from the application of new criteria for toxicophore rule derivation and validation to a considerably sized mutagenicity dataset. For this purpose, a dataset of 4337 molecular structures with corresponding Ames test data (2401 mutagens and 1936 nonmutagens) was constructed. An initial substructure-search of this dataset showed that most mutagens were detected by applying only eight general toxicophores. From these eight, more specific toxicophores were derived and approved by employing chemical and mechanistic knowledge in combination with statistical criteria. A final set of 29 toxicophores containing new substructures was assembled that could classify the mutagenicity of the investigated dataset with a total classification error of 18%. Furthermore, mutagenicity predictions of an independent validation set of 535 compounds were performed with an error percentage of 15%. Since these error percentages approach the average interlaboratory reproducibility error of Ames tests, which is 15%, it was concluded that these toxicophores can be applied to risk assessment processes and can guide the design of chemical libraries for hit and lead optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无辜紫菜发布了新的文献求助10
刚刚
华仔应助薛变霞采纳,获得10
1秒前
哈尼完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
Fushanyu完成签到 ,获得积分10
1秒前
2秒前
you完成签到,获得积分10
3秒前
3秒前
ZHAO发布了新的文献求助10
4秒前
彭于晏应助机智笑南采纳,获得10
5秒前
tt发布了新的文献求助10
5秒前
风趣的觅山完成签到 ,获得积分10
5秒前
明亮棉花糖完成签到 ,获得积分10
6秒前
pzh发布了新的文献求助10
6秒前
卷毛发布了新的文献求助10
6秒前
充电宝应助谦让的傲芙采纳,获得10
7秒前
CodeCraft应助于66采纳,获得10
8秒前
tuyfytjt发布了新的文献求助10
8秒前
东糸容完成签到,获得积分10
8秒前
吴宇杰发布了新的文献求助10
9秒前
袁不评发布了新的文献求助10
9秒前
evvj完成签到,获得积分10
9秒前
噜啦啦发布了新的文献求助30
9秒前
11秒前
11秒前
zzzhujp发布了新的文献求助10
12秒前
浮游应助lee采纳,获得10
12秒前
15秒前
ding应助AAA电池批发顾总采纳,获得10
16秒前
Akim应助王羲之采纳,获得10
16秒前
kk发布了新的文献求助10
16秒前
薛变霞发布了新的文献求助10
16秒前
CodeCraft应助李李李采纳,获得10
16秒前
钉书机机发布了新的文献求助10
16秒前
ZHAO完成签到,获得积分10
17秒前
简单芾发布了新的文献求助10
17秒前
qingjiu发布了新的文献求助10
18秒前
百甲完成签到,获得积分10
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693788
求助须知:如何正确求助?哪些是违规求助? 5094331
关于积分的说明 15212383
捐赠科研通 4850595
什么是DOI,文献DOI怎么找? 2601854
邀请新用户注册赠送积分活动 1553652
关于科研通互助平台的介绍 1511661