Derivation and Validation of Toxicophores for Mutagenicity Prediction

艾姆斯试验 集合(抽象数据类型) 可靠性(半导体) 数据集 化学 分子描述符 数据挖掘 统计 数量结构-活动关系 计算生物学 计算机科学 数学 立体化学 遗传学 热力学 功率(物理) 物理 沙门氏菌 细菌 生物 程序设计语言
作者
Jeroen Kazius,Ross McGuire,Roberta Bursi
出处
期刊:Journal of Medicinal Chemistry [American Chemical Society]
卷期号:48 (1): 312-320 被引量:560
标识
DOI:10.1021/jm040835a
摘要

Mutagenicity is one of the numerous adverse properties of a compound that hampers its potential to become a marketable drug. Toxic properties can often be related to chemical structure, more specifically, to particular substructures, which are generally identified as toxicophores. A number of toxicophores have already been identified in the literature. This study aims at increasing the current degree of reliability and accuracy of mutagenicity predictions by identifying novel toxicophores from the application of new criteria for toxicophore rule derivation and validation to a considerably sized mutagenicity dataset. For this purpose, a dataset of 4337 molecular structures with corresponding Ames test data (2401 mutagens and 1936 nonmutagens) was constructed. An initial substructure-search of this dataset showed that most mutagens were detected by applying only eight general toxicophores. From these eight, more specific toxicophores were derived and approved by employing chemical and mechanistic knowledge in combination with statistical criteria. A final set of 29 toxicophores containing new substructures was assembled that could classify the mutagenicity of the investigated dataset with a total classification error of 18%. Furthermore, mutagenicity predictions of an independent validation set of 535 compounds were performed with an error percentage of 15%. Since these error percentages approach the average interlaboratory reproducibility error of Ames tests, which is 15%, it was concluded that these toxicophores can be applied to risk assessment processes and can guide the design of chemical libraries for hit and lead optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆头发布了新的文献求助10
1秒前
若水发布了新的文献求助200
2秒前
2秒前
3秒前
子川发布了新的文献求助10
3秒前
大头娃娃没下巴完成签到,获得积分10
5秒前
liyuchen完成签到,获得积分10
5秒前
CipherSage应助Lxxx_7采纳,获得10
6秒前
烟花应助永远少年采纳,获得10
6秒前
meng发布了新的文献求助10
8秒前
科研通AI5应助贪吃的猴子采纳,获得10
10秒前
10秒前
可爱的彩虹完成签到,获得积分10
10秒前
小确幸完成签到,获得积分10
10秒前
彭于晏应助毛毛虫采纳,获得10
11秒前
LilyChen完成签到 ,获得积分10
11秒前
Owen应助Su采纳,获得10
11秒前
11秒前
11秒前
12秒前
13秒前
yyyy关注了科研通微信公众号
13秒前
Jane完成签到 ,获得积分10
14秒前
14秒前
14秒前
kento发布了新的文献求助30
14秒前
Akim应助balzacsun采纳,获得10
15秒前
狼来了aas发布了新的文献求助10
15秒前
16秒前
didi完成签到,获得积分10
16秒前
嘻嘻发布了新的文献求助10
18秒前
冲冲冲完成签到 ,获得积分10
18秒前
18秒前
19秒前
19秒前
19秒前
19秒前
20秒前
20秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824