Derivation and Validation of Toxicophores for Mutagenicity Prediction

艾姆斯试验 集合(抽象数据类型) 可靠性(半导体) 数据集 化学 分子描述符 数据挖掘 统计 数量结构-活动关系 计算生物学 计算机科学 数学 立体化学 遗传学 热力学 物理 功率(物理) 生物 程序设计语言 细菌 沙门氏菌
作者
Jeroen Kazius,Ross McGuire,Roberta Bursi
出处
期刊:Journal of Medicinal Chemistry [American Chemical Society]
卷期号:48 (1): 312-320 被引量:560
标识
DOI:10.1021/jm040835a
摘要

Mutagenicity is one of the numerous adverse properties of a compound that hampers its potential to become a marketable drug. Toxic properties can often be related to chemical structure, more specifically, to particular substructures, which are generally identified as toxicophores. A number of toxicophores have already been identified in the literature. This study aims at increasing the current degree of reliability and accuracy of mutagenicity predictions by identifying novel toxicophores from the application of new criteria for toxicophore rule derivation and validation to a considerably sized mutagenicity dataset. For this purpose, a dataset of 4337 molecular structures with corresponding Ames test data (2401 mutagens and 1936 nonmutagens) was constructed. An initial substructure-search of this dataset showed that most mutagens were detected by applying only eight general toxicophores. From these eight, more specific toxicophores were derived and approved by employing chemical and mechanistic knowledge in combination with statistical criteria. A final set of 29 toxicophores containing new substructures was assembled that could classify the mutagenicity of the investigated dataset with a total classification error of 18%. Furthermore, mutagenicity predictions of an independent validation set of 535 compounds were performed with an error percentage of 15%. Since these error percentages approach the average interlaboratory reproducibility error of Ames tests, which is 15%, it was concluded that these toxicophores can be applied to risk assessment processes and can guide the design of chemical libraries for hit and lead optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
超帅的啤酒完成签到,获得积分10
1秒前
qhg发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
顺顺黎黎发布了新的文献求助10
1秒前
伶俐的语蕊完成签到,获得积分20
2秒前
2秒前
叶许完成签到 ,获得积分10
2秒前
2秒前
盛世嫡妃发布了新的文献求助10
2秒前
领导范儿应助1234采纳,获得20
2秒前
4秒前
踏实十三发布了新的文献求助10
4秒前
Akim应助mz采纳,获得10
4秒前
董先生发布了新的文献求助10
4秒前
蚊香液发布了新的文献求助10
4秒前
鲸鱼发布了新的文献求助10
4秒前
4秒前
是希希啊a发布了新的文献求助10
5秒前
FashionBoy应助栗子采纳,获得10
5秒前
ky幻影完成签到,获得积分10
5秒前
dddd发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
科研通AI6应助里昂采纳,获得30
5秒前
6秒前
枯草芽孢完成签到,获得积分10
6秒前
li完成签到,获得积分20
6秒前
赘婿应助Spike采纳,获得10
6秒前
饭饭大王完成签到,获得积分10
6秒前
SY发布了新的文献求助10
7秒前
7秒前
7秒前
诚心寄灵完成签到,获得积分10
8秒前
8秒前
Halari发布了新的文献求助10
8秒前
8秒前
zoe11完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482