Derivation and Validation of Toxicophores for Mutagenicity Prediction

艾姆斯试验 集合(抽象数据类型) 可靠性(半导体) 数据集 化学 分子描述符 数据挖掘 统计 数量结构-活动关系 计算生物学 计算机科学 数学 立体化学 遗传学 热力学 物理 功率(物理) 生物 程序设计语言 细菌 沙门氏菌
作者
Jeroen Kazius,Ross McGuire,Roberta Bursi
出处
期刊:Journal of Medicinal Chemistry [American Chemical Society]
卷期号:48 (1): 312-320 被引量:560
标识
DOI:10.1021/jm040835a
摘要

Mutagenicity is one of the numerous adverse properties of a compound that hampers its potential to become a marketable drug. Toxic properties can often be related to chemical structure, more specifically, to particular substructures, which are generally identified as toxicophores. A number of toxicophores have already been identified in the literature. This study aims at increasing the current degree of reliability and accuracy of mutagenicity predictions by identifying novel toxicophores from the application of new criteria for toxicophore rule derivation and validation to a considerably sized mutagenicity dataset. For this purpose, a dataset of 4337 molecular structures with corresponding Ames test data (2401 mutagens and 1936 nonmutagens) was constructed. An initial substructure-search of this dataset showed that most mutagens were detected by applying only eight general toxicophores. From these eight, more specific toxicophores were derived and approved by employing chemical and mechanistic knowledge in combination with statistical criteria. A final set of 29 toxicophores containing new substructures was assembled that could classify the mutagenicity of the investigated dataset with a total classification error of 18%. Furthermore, mutagenicity predictions of an independent validation set of 535 compounds were performed with an error percentage of 15%. Since these error percentages approach the average interlaboratory reproducibility error of Ames tests, which is 15%, it was concluded that these toxicophores can be applied to risk assessment processes and can guide the design of chemical libraries for hit and lead optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左丘冥完成签到,获得积分10
1秒前
1秒前
内向的小虾米完成签到,获得积分10
2秒前
迪迪张完成签到,获得积分10
2秒前
桐桐应助小张同学采纳,获得10
2秒前
阳6完成签到 ,获得积分10
2秒前
xiaojin完成签到,获得积分10
3秒前
liu完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
大锅逢饭完成签到,获得积分10
3秒前
3秒前
志小天完成签到,获得积分10
4秒前
5秒前
自觉志泽发布了新的文献求助10
5秒前
ping完成签到 ,获得积分10
5秒前
5秒前
米子哈发布了新的文献求助10
6秒前
华仔应助刘奎冉采纳,获得30
6秒前
研友Bn完成签到 ,获得积分10
7秒前
7秒前
8秒前
xinghe123发布了新的文献求助10
8秒前
酷酷问薇完成签到,获得积分20
9秒前
9秒前
H_完成签到,获得积分10
9秒前
2024dsb完成签到 ,获得积分10
10秒前
10秒前
西行纪发布了新的文献求助10
11秒前
DreamSeker8完成签到,获得积分10
11秒前
科研通AI6应助Scorpio采纳,获得30
11秒前
11秒前
认真浩宇发布了新的文献求助10
12秒前
坚强小虾米完成签到,获得积分10
12秒前
12秒前
13秒前
zzztsing0213完成签到,获得积分10
13秒前
sxmt123456789发布了新的文献求助30
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809