Derivation and Validation of Toxicophores for Mutagenicity Prediction

艾姆斯试验 集合(抽象数据类型) 可靠性(半导体) 数据集 化学 分子描述符 数据挖掘 统计 数量结构-活动关系 计算生物学 计算机科学 数学 立体化学 遗传学 热力学 物理 功率(物理) 生物 程序设计语言 细菌 沙门氏菌
作者
Jeroen Kazius,Ross McGuire,Roberta Bursi
出处
期刊:Journal of Medicinal Chemistry [American Chemical Society]
卷期号:48 (1): 312-320 被引量:560
标识
DOI:10.1021/jm040835a
摘要

Mutagenicity is one of the numerous adverse properties of a compound that hampers its potential to become a marketable drug. Toxic properties can often be related to chemical structure, more specifically, to particular substructures, which are generally identified as toxicophores. A number of toxicophores have already been identified in the literature. This study aims at increasing the current degree of reliability and accuracy of mutagenicity predictions by identifying novel toxicophores from the application of new criteria for toxicophore rule derivation and validation to a considerably sized mutagenicity dataset. For this purpose, a dataset of 4337 molecular structures with corresponding Ames test data (2401 mutagens and 1936 nonmutagens) was constructed. An initial substructure-search of this dataset showed that most mutagens were detected by applying only eight general toxicophores. From these eight, more specific toxicophores were derived and approved by employing chemical and mechanistic knowledge in combination with statistical criteria. A final set of 29 toxicophores containing new substructures was assembled that could classify the mutagenicity of the investigated dataset with a total classification error of 18%. Furthermore, mutagenicity predictions of an independent validation set of 535 compounds were performed with an error percentage of 15%. Since these error percentages approach the average interlaboratory reproducibility error of Ames tests, which is 15%, it was concluded that these toxicophores can be applied to risk assessment processes and can guide the design of chemical libraries for hit and lead optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Yasmine完成签到 ,获得积分10
1秒前
bb发布了新的文献求助10
1秒前
1秒前
六尺巷发布了新的文献求助10
2秒前
3秒前
乔an发布了新的文献求助30
3秒前
3秒前
4秒前
bibi发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
古月完成签到,获得积分10
4秒前
5秒前
Frank完成签到 ,获得积分10
5秒前
个性白羊发布了新的文献求助10
6秒前
amanda完成签到 ,获得积分10
6秒前
7秒前
霜降应助逸风望采纳,获得10
7秒前
max发布了新的文献求助10
9秒前
9秒前
Jasper应助还单身的尔琴采纳,获得10
9秒前
林夏应助pray采纳,获得10
10秒前
10秒前
陈秋禹完成签到,获得积分10
10秒前
10秒前
小冯发布了新的文献求助10
10秒前
10秒前
11秒前
专注的问寒应助LIU采纳,获得50
11秒前
11秒前
文艺过客发布了新的文献求助10
12秒前
FashionBoy应助晚风采纳,获得10
13秒前
13秒前
13秒前
Yaphet完成签到,获得积分10
13秒前
HJJHJH发布了新的文献求助10
14秒前
希望天下0贩的0应助zzz采纳,获得10
14秒前
鱼饼发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637298
求助须知:如何正确求助?哪些是违规求助? 4743192
关于积分的说明 14998742
捐赠科研通 4795599
什么是DOI,文献DOI怎么找? 2562070
邀请新用户注册赠送积分活动 1521546
关于科研通互助平台的介绍 1481548