Derivation and Validation of Toxicophores for Mutagenicity Prediction

艾姆斯试验 集合(抽象数据类型) 可靠性(半导体) 数据集 化学 分子描述符 数据挖掘 统计 数量结构-活动关系 计算生物学 计算机科学 数学 立体化学 遗传学 热力学 功率(物理) 物理 沙门氏菌 细菌 生物 程序设计语言
作者
Jeroen Kazius,Ross McGuire,Roberta Bursi
出处
期刊:Journal of Medicinal Chemistry [American Chemical Society]
卷期号:48 (1): 312-320 被引量:560
标识
DOI:10.1021/jm040835a
摘要

Mutagenicity is one of the numerous adverse properties of a compound that hampers its potential to become a marketable drug. Toxic properties can often be related to chemical structure, more specifically, to particular substructures, which are generally identified as toxicophores. A number of toxicophores have already been identified in the literature. This study aims at increasing the current degree of reliability and accuracy of mutagenicity predictions by identifying novel toxicophores from the application of new criteria for toxicophore rule derivation and validation to a considerably sized mutagenicity dataset. For this purpose, a dataset of 4337 molecular structures with corresponding Ames test data (2401 mutagens and 1936 nonmutagens) was constructed. An initial substructure-search of this dataset showed that most mutagens were detected by applying only eight general toxicophores. From these eight, more specific toxicophores were derived and approved by employing chemical and mechanistic knowledge in combination with statistical criteria. A final set of 29 toxicophores containing new substructures was assembled that could classify the mutagenicity of the investigated dataset with a total classification error of 18%. Furthermore, mutagenicity predictions of an independent validation set of 535 compounds were performed with an error percentage of 15%. Since these error percentages approach the average interlaboratory reproducibility error of Ames tests, which is 15%, it was concluded that these toxicophores can be applied to risk assessment processes and can guide the design of chemical libraries for hit and lead optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
火龙果色素完成签到,获得积分10
2秒前
子车茗应助冷傲老头采纳,获得20
4秒前
5秒前
长长的名字完成签到 ,获得积分10
9秒前
斯文败类应助jila采纳,获得10
10秒前
13秒前
Hello应助嘿嘿采纳,获得10
14秒前
可可可可汁完成签到 ,获得积分10
17秒前
无奈的尔容完成签到,获得积分10
19秒前
Xiaohu完成签到,获得积分10
20秒前
XIEQ发布了新的文献求助10
21秒前
21秒前
科研通AI6应助yyanxuemin919采纳,获得10
23秒前
23秒前
25秒前
27秒前
一头猪发布了新的文献求助10
28秒前
Bazinga完成签到,获得积分10
28秒前
嗯嗯嗯完成签到,获得积分10
29秒前
懒鲸鱼给懒鲸鱼的求助进行了留言
29秒前
30秒前
嘿嘿发布了新的文献求助10
30秒前
able完成签到 ,获得积分10
31秒前
32秒前
嗯嗯嗯发布了新的文献求助10
33秒前
丘比特应助度ewf采纳,获得10
34秒前
丽丽丽发布了新的文献求助10
34秒前
yyanxuemin919发布了新的文献求助10
34秒前
蘑菇完成签到 ,获得积分10
37秒前
jam发布了新的文献求助10
37秒前
38秒前
烟花应助ccc采纳,获得10
39秒前
拉长的诗蕊完成签到,获得积分10
39秒前
40秒前
大妙妙完成签到 ,获得积分10
43秒前
43秒前
里里完成签到 ,获得积分10
44秒前
韩妙发布了新的文献求助10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563579
求助须知:如何正确求助?哪些是违规求助? 4648467
关于积分的说明 14685031
捐赠科研通 4590445
什么是DOI,文献DOI怎么找? 2518519
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432