Derivation and Validation of Toxicophores for Mutagenicity Prediction

艾姆斯试验 集合(抽象数据类型) 可靠性(半导体) 数据集 化学 分子描述符 数据挖掘 统计 数量结构-活动关系 计算生物学 计算机科学 数学 立体化学 遗传学 热力学 物理 功率(物理) 生物 程序设计语言 细菌 沙门氏菌
作者
Jeroen Kazius,Ross McGuire,Roberta Bursi
出处
期刊:Journal of Medicinal Chemistry [American Chemical Society]
卷期号:48 (1): 312-320 被引量:560
标识
DOI:10.1021/jm040835a
摘要

Mutagenicity is one of the numerous adverse properties of a compound that hampers its potential to become a marketable drug. Toxic properties can often be related to chemical structure, more specifically, to particular substructures, which are generally identified as toxicophores. A number of toxicophores have already been identified in the literature. This study aims at increasing the current degree of reliability and accuracy of mutagenicity predictions by identifying novel toxicophores from the application of new criteria for toxicophore rule derivation and validation to a considerably sized mutagenicity dataset. For this purpose, a dataset of 4337 molecular structures with corresponding Ames test data (2401 mutagens and 1936 nonmutagens) was constructed. An initial substructure-search of this dataset showed that most mutagens were detected by applying only eight general toxicophores. From these eight, more specific toxicophores were derived and approved by employing chemical and mechanistic knowledge in combination with statistical criteria. A final set of 29 toxicophores containing new substructures was assembled that could classify the mutagenicity of the investigated dataset with a total classification error of 18%. Furthermore, mutagenicity predictions of an independent validation set of 535 compounds were performed with an error percentage of 15%. Since these error percentages approach the average interlaboratory reproducibility error of Ames tests, which is 15%, it was concluded that these toxicophores can be applied to risk assessment processes and can guide the design of chemical libraries for hit and lead optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
着急的盼山完成签到,获得积分10
2秒前
马马完成签到,获得积分20
3秒前
4秒前
新雨发布了新的文献求助10
6秒前
6秒前
大个应助lins采纳,获得10
6秒前
Hello应助勤奋凝安采纳,获得10
6秒前
自由刺猬发布了新的文献求助10
6秒前
7秒前
如意醉香关注了科研通微信公众号
7秒前
马马发布了新的文献求助10
7秒前
善学以致用应助闾丘惜萱采纳,获得10
7秒前
liruiyi发布了新的文献求助10
8秒前
悄悄.完成签到,获得积分10
9秒前
大气成风完成签到 ,获得积分10
9秒前
9秒前
LuckyJ_Jia完成签到,获得积分10
9秒前
坦率的傥发布了新的文献求助10
10秒前
www发布了新的文献求助10
10秒前
哞哞完成签到,获得积分10
10秒前
FashionBoy应助坚强的笑天采纳,获得10
10秒前
11秒前
含糊的紫菜完成签到 ,获得积分10
11秒前
12秒前
13秒前
科研通AI2S应助欢喜楼房采纳,获得10
13秒前
badada完成签到 ,获得积分10
14秒前
14秒前
无花果应助moxuyio采纳,获得10
15秒前
综述白发布了新的文献求助10
15秒前
赘婿应助冉亦采纳,获得10
16秒前
如意醉香发布了新的文献求助10
16秒前
17秒前
NexusExplorer应助vv采纳,获得10
17秒前
18秒前
pineapple完成签到,获得积分10
18秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124336
求助须知:如何正确求助?哪些是违规求助? 2774637
关于积分的说明 7723368
捐赠科研通 2430117
什么是DOI,文献DOI怎么找? 1290937
科研通“疑难数据库(出版商)”最低求助积分说明 621972
版权声明 600297