钙钛矿(结构)
双功能
材料科学
催化作用
介孔材料
氧化物
化学工程
无机化学
纳米纤维
电池(电)
析氧
锌
电极
纳米技术
电化学
化学
物理化学
冶金
有机化学
量子力学
功率(物理)
工程类
物理
作者
Yunfei Bu,Ohhun Gwon,Gyutae Nam,Haeseong Jang,Seona Kim,Qin Zhong,Jaephil Cho,Guntae Kim
出处
期刊:ACS Nano
[American Chemical Society]
日期:2017-10-19
卷期号:11 (11): 11594-11601
被引量:241
标识
DOI:10.1021/acsnano.7b06595
摘要
Of the various catalysts that have been developed to date for high performance and low cost, perovskite oxides have attracted attention due to their inherent catalytic activity as well as structural flexibility. In particular, high amounts of Pr substitution of the cation ordered perovskite oxide originating from the state-of-the-art Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) electrode could be a good electrode or catalyst because of its high oxygen kinetics, electrical conductivity, oxygen capacity, and structural stability. However, even though it has many favorable intrinsic properties, the conventional high-temperature treatment for perovskite synthesis, such as solid-state reaction and combustion process, leads to the particle size increase which gives rise to the decrease in surface area and the mass activity. Therefore, we prepared mesoporous nanofibers of various cation-ordered PrBa0.5Sr0.5Co2–xFexO5+δ (x = 0, 0.5, 1, 1.5, and 2) perovskites via electrospinning. The well-controlled B-site metal ratio and large surface area (∼20 m2 g–1) of mesoporous nanofiber result in high performance of the oxygen reduction reaction and oxygen evolution reaction and stability in zinc-air battery.
科研通智能强力驱动
Strongly Powered by AbleSci AI