清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Examining the Ability of Artificial Neural Networks Machine Learning Models to Accurately Predict Complications Following Posterior Lumbar Spine Fusion

医学 逻辑回归 机器学习 人工神经网络 体质指数 麻醉学 腰椎 骨科手术 人工智能 外科 内科学 麻醉 计算机科学
作者
Jun Kim,Robert Merrill,Varun Arvind,Deepak Kaji,Sara Pasik,Chuma C. Nwachukwu,Luilly Vargas,Nebiyu Osman,Eric K. Oermann,John M. Caridi,Samuel K. Cho
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
卷期号:43 (12): 853-860 被引量:162
标识
DOI:10.1097/brs.0000000000002442
摘要

A cross-sectional database study.The aim of this study was to train and validate machine learning models to identify risk factors for complications following posterior lumbar spine fusion.Machine learning models such as artificial neural networks (ANNs) are valuable tools for analyzing and interpreting large and complex datasets. ANNs have yet to be used for risk factor analysis in orthopedic surgery.The American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database was queried for patients who underwent posterior lumbar spine fusion. This query returned 22,629 patients, 70% of whom were used to train our models, and 30% were used to evaluate the models. The predictive variables used included sex, age, ethnicity, diabetes, smoking, steroid use, coagulopathy, functional status, American Society for Anesthesiology (ASA) class ≥3, body mass index (BMI), pulmonary comorbidities, and cardiac comorbidities. The models were used to predict cardiac complications, wound complications, venous thromboembolism (VTE), and mortality. Using ASA class as a benchmark for prediction, area under receiver operating curves (AUC) was used to determine the accuracy of our machine learning models.On the basis of AUC values, ANN and LR both outperformed ASA class for predicting all four types of complications. ANN was the most accurate for predicting cardiac complications, and LR was most accurate for predicting wound complications, VTE, and mortality, though ANN and LR had comparable AUC values for predicting all types of complications. ANN had greater sensitivity than LR for detecting wound complications and mortality.Machine learning in the form of logistic regression and ANNs were more accurate than benchmark ASA scores for identifying risk factors of developing complications following posterior lumbar spine fusion, suggesting they are potentially great tools for risk factor analysis in spine surgery.3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助wciphone采纳,获得10
4秒前
14秒前
26秒前
Arctic完成签到 ,获得积分10
35秒前
FMHChan完成签到,获得积分10
37秒前
量子星尘发布了新的文献求助10
1分钟前
婉莹完成签到 ,获得积分0
1分钟前
大饼完成签到 ,获得积分10
1分钟前
1分钟前
wciphone发布了新的文献求助10
1分钟前
xuexi完成签到 ,获得积分10
1分钟前
远方完成签到 ,获得积分10
1分钟前
tianshanfeihe完成签到 ,获得积分10
1分钟前
BowieHuang应助Omni采纳,获得20
1分钟前
1分钟前
年轻的凝云完成签到 ,获得积分10
1分钟前
糟糕的翅膀完成签到,获得积分10
2分钟前
科研通AI6应助wciphone采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
白华苍松发布了新的文献求助10
2分钟前
zzh完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
学生信的大叔完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
白华苍松发布了新的文献求助10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
silence完成签到 ,获得积分10
5分钟前
咯咯咯完成签到 ,获得积分10
6分钟前
ccl发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534469
求助须知:如何正确求助?哪些是违规求助? 4622450
关于积分的说明 14582630
捐赠科研通 4562656
什么是DOI,文献DOI怎么找? 2500278
邀请新用户注册赠送积分活动 1479820
关于科研通互助平台的介绍 1451022