清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Examining the Ability of Artificial Neural Networks Machine Learning Models to Accurately Predict Complications Following Posterior Lumbar Spine Fusion

医学 逻辑回归 机器学习 人工神经网络 体质指数 麻醉学 腰椎 骨科手术 人工智能 外科 内科学 麻醉 计算机科学
作者
Jun Kim,Robert Merrill,Varun Arvind,Deepak Kaji,Sara Pasik,Chuma C. Nwachukwu,Luilly Vargas,Nebiyu Osman,Eric K. Oermann,John M. Caridi,Samuel K. Cho
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
卷期号:43 (12): 853-860 被引量:150
标识
DOI:10.1097/brs.0000000000002442
摘要

A cross-sectional database study.The aim of this study was to train and validate machine learning models to identify risk factors for complications following posterior lumbar spine fusion.Machine learning models such as artificial neural networks (ANNs) are valuable tools for analyzing and interpreting large and complex datasets. ANNs have yet to be used for risk factor analysis in orthopedic surgery.The American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database was queried for patients who underwent posterior lumbar spine fusion. This query returned 22,629 patients, 70% of whom were used to train our models, and 30% were used to evaluate the models. The predictive variables used included sex, age, ethnicity, diabetes, smoking, steroid use, coagulopathy, functional status, American Society for Anesthesiology (ASA) class ≥3, body mass index (BMI), pulmonary comorbidities, and cardiac comorbidities. The models were used to predict cardiac complications, wound complications, venous thromboembolism (VTE), and mortality. Using ASA class as a benchmark for prediction, area under receiver operating curves (AUC) was used to determine the accuracy of our machine learning models.On the basis of AUC values, ANN and LR both outperformed ASA class for predicting all four types of complications. ANN was the most accurate for predicting cardiac complications, and LR was most accurate for predicting wound complications, VTE, and mortality, though ANN and LR had comparable AUC values for predicting all types of complications. ANN had greater sensitivity than LR for detecting wound complications and mortality.Machine learning in the form of logistic regression and ANNs were more accurate than benchmark ASA scores for identifying risk factors of developing complications following posterior lumbar spine fusion, suggesting they are potentially great tools for risk factor analysis in spine surgery.3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
volvoamg发布了新的文献求助30
29秒前
妖哥完成签到,获得积分10
1分钟前
小可完成签到,获得积分10
1分钟前
Richard完成签到 ,获得积分10
1分钟前
tuanheqi应助雪上一枝蒿采纳,获得30
1分钟前
Tumumu完成签到,获得积分10
2分钟前
加贝完成签到 ,获得积分10
2分钟前
JamesPei应助聪慧的祥采纳,获得10
2分钟前
muriel完成签到,获得积分10
3分钟前
博慧完成签到 ,获得积分10
4分钟前
李爱国应助冷酷的雁菡采纳,获得10
4分钟前
5分钟前
5分钟前
冬去春来完成签到 ,获得积分10
5分钟前
xyqnb完成签到,获得积分20
6分钟前
Lucas应助xyqnb采纳,获得10
6分钟前
顾矜应助carpybala采纳,获得10
7分钟前
7分钟前
7分钟前
carpybala发布了新的文献求助10
7分钟前
斯文败类应助carpybala采纳,获得10
7分钟前
结实的丹妗完成签到,获得积分10
7分钟前
7分钟前
xyqnb发布了新的文献求助10
7分钟前
爱心完成签到 ,获得积分10
8分钟前
NexusExplorer应助xyqnb采纳,获得10
8分钟前
8分钟前
xyqnb发布了新的文献求助10
8分钟前
Tiger完成签到,获得积分10
8分钟前
Ann完成签到,获得积分10
8分钟前
美好灵寒完成签到 ,获得积分10
8分钟前
gwbk完成签到,获得积分10
8分钟前
Liumingyu发布了新的文献求助10
9分钟前
9分钟前
阿玉发布了新的文献求助10
10分钟前
tutu完成签到,获得积分10
10分钟前
11分钟前
爆米花应助科研通管家采纳,获得10
11分钟前
方白秋完成签到,获得积分10
12分钟前
天天快乐应助科研通管家采纳,获得10
13分钟前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
Ultrasound-guided bilateral erector spinae plane block in the management of postoperative analgesia in living liver donors: a randomized, prospective study 400
Functional Syntax Handbook: Analyzing English at the Level of Form (作者 Robin Fawcett ) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3215718
求助须知:如何正确求助?哪些是违规求助? 2864341
关于积分的说明 8142242
捐赠科研通 2530540
什么是DOI,文献DOI怎么找? 1364746
科研通“疑难数据库(出版商)”最低求助积分说明 644293
邀请新用户注册赠送积分活动 616852