Examining the Ability of Artificial Neural Networks Machine Learning Models to Accurately Predict Complications Following Posterior Lumbar Spine Fusion

医学 逻辑回归 机器学习 人工神经网络 体质指数 麻醉学 腰椎 骨科手术 人工智能 外科 内科学 麻醉 计算机科学
作者
Jun Kim,Robert Merrill,Varun Arvind,Deepak Kaji,Sara Pasik,Chuma C. Nwachukwu,Luilly Vargas,Nebiyu Osman,Eric K. Oermann,John M. Caridi,Samuel K. Cho
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
卷期号:43 (12): 853-860 被引量:162
标识
DOI:10.1097/brs.0000000000002442
摘要

A cross-sectional database study.The aim of this study was to train and validate machine learning models to identify risk factors for complications following posterior lumbar spine fusion.Machine learning models such as artificial neural networks (ANNs) are valuable tools for analyzing and interpreting large and complex datasets. ANNs have yet to be used for risk factor analysis in orthopedic surgery.The American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database was queried for patients who underwent posterior lumbar spine fusion. This query returned 22,629 patients, 70% of whom were used to train our models, and 30% were used to evaluate the models. The predictive variables used included sex, age, ethnicity, diabetes, smoking, steroid use, coagulopathy, functional status, American Society for Anesthesiology (ASA) class ≥3, body mass index (BMI), pulmonary comorbidities, and cardiac comorbidities. The models were used to predict cardiac complications, wound complications, venous thromboembolism (VTE), and mortality. Using ASA class as a benchmark for prediction, area under receiver operating curves (AUC) was used to determine the accuracy of our machine learning models.On the basis of AUC values, ANN and LR both outperformed ASA class for predicting all four types of complications. ANN was the most accurate for predicting cardiac complications, and LR was most accurate for predicting wound complications, VTE, and mortality, though ANN and LR had comparable AUC values for predicting all types of complications. ANN had greater sensitivity than LR for detecting wound complications and mortality.Machine learning in the form of logistic regression and ANNs were more accurate than benchmark ASA scores for identifying risk factors of developing complications following posterior lumbar spine fusion, suggesting they are potentially great tools for risk factor analysis in spine surgery.3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6.1应助苹果音响采纳,获得10
1秒前
yznfly应助少言采纳,获得50
1秒前
自信小熊猫完成签到,获得积分20
1秒前
健康的涵菡完成签到,获得积分20
2秒前
2秒前
自由的松发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
3秒前
怕黑蓝发布了新的文献求助10
3秒前
zzr123完成签到,获得积分10
4秒前
后笑晴发布了新的文献求助10
4秒前
5秒前
北巷发布了新的文献求助10
5秒前
yznfly应助少言采纳,获得50
5秒前
酷波er应助文献杀手采纳,获得10
5秒前
6秒前
香蕉觅云应助淡定的镜子采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
甜甜的慕山完成签到,获得积分10
7秒前
科研通AI6.1应助栖栖采纳,获得10
7秒前
jeania应助少言采纳,获得50
8秒前
8秒前
WangWaud发布了新的文献求助10
8秒前
ZXCVB发布了新的文献求助30
9秒前
逍遥游发布了新的文献求助10
9秒前
9秒前
思源应助wy采纳,获得10
9秒前
小蘑菇应助hhhh采纳,获得10
9秒前
9秒前
SerCheung完成签到,获得积分10
10秒前
11秒前
11秒前
Jasper应助yin采纳,获得10
11秒前
12秒前
12秒前
Dr_Xu_Liu发布了新的文献求助10
12秒前
健忘怜雪发布了新的文献求助10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5753463
求助须知:如何正确求助?哪些是违规求助? 5481244
关于积分的说明 15378197
捐赠科研通 4892357
什么是DOI,文献DOI怎么找? 2631179
邀请新用户注册赠送积分活动 1579248
关于科研通互助平台的介绍 1535000