Examining the Ability of Artificial Neural Networks Machine Learning Models to Accurately Predict Complications Following Posterior Lumbar Spine Fusion

医学 逻辑回归 机器学习 人工神经网络 体质指数 麻醉学 腰椎 骨科手术 人工智能 外科 内科学 麻醉 计算机科学
作者
Jun Kim,Robert Merrill,Varun Arvind,Deepak Kaji,Sara Pasik,Chuma C. Nwachukwu,Luilly Vargas,Nebiyu Osman,Eric K. Oermann,John M. Caridi,Samuel K. Cho
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
卷期号:43 (12): 853-860 被引量:162
标识
DOI:10.1097/brs.0000000000002442
摘要

A cross-sectional database study.The aim of this study was to train and validate machine learning models to identify risk factors for complications following posterior lumbar spine fusion.Machine learning models such as artificial neural networks (ANNs) are valuable tools for analyzing and interpreting large and complex datasets. ANNs have yet to be used for risk factor analysis in orthopedic surgery.The American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database was queried for patients who underwent posterior lumbar spine fusion. This query returned 22,629 patients, 70% of whom were used to train our models, and 30% were used to evaluate the models. The predictive variables used included sex, age, ethnicity, diabetes, smoking, steroid use, coagulopathy, functional status, American Society for Anesthesiology (ASA) class ≥3, body mass index (BMI), pulmonary comorbidities, and cardiac comorbidities. The models were used to predict cardiac complications, wound complications, venous thromboembolism (VTE), and mortality. Using ASA class as a benchmark for prediction, area under receiver operating curves (AUC) was used to determine the accuracy of our machine learning models.On the basis of AUC values, ANN and LR both outperformed ASA class for predicting all four types of complications. ANN was the most accurate for predicting cardiac complications, and LR was most accurate for predicting wound complications, VTE, and mortality, though ANN and LR had comparable AUC values for predicting all types of complications. ANN had greater sensitivity than LR for detecting wound complications and mortality.Machine learning in the form of logistic regression and ANNs were more accurate than benchmark ASA scores for identifying risk factors of developing complications following posterior lumbar spine fusion, suggesting they are potentially great tools for risk factor analysis in spine surgery.3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高哈哈哈完成签到,获得积分10
1秒前
yr发布了新的文献求助10
4秒前
5秒前
微笑翠桃发布了新的文献求助10
8秒前
8秒前
马佳音完成签到 ,获得积分10
9秒前
在水一方应助Eon采纳,获得10
9秒前
TB123发布了新的文献求助10
9秒前
11秒前
JHL完成签到 ,获得积分10
11秒前
13秒前
13秒前
黎是叻熠黎完成签到,获得积分10
14秒前
每天必补一科完成签到,获得积分10
14秒前
花生完成签到,获得积分10
15秒前
mufcyang完成签到,获得积分10
15秒前
16秒前
缪缪发布了新的文献求助10
17秒前
17秒前
风清扬发布了新的文献求助10
18秒前
甜美乘云完成签到,获得积分10
19秒前
万能图书馆应助嘿嘿采纳,获得10
19秒前
21秒前
21秒前
xuxin完成签到 ,获得积分10
22秒前
大模型应助温柔柜子采纳,获得10
22秒前
啦啦啦完成签到,获得积分10
22秒前
易点邦发布了新的文献求助10
23秒前
23秒前
yyymmm完成签到,获得积分10
25秒前
Anna完成签到 ,获得积分10
26秒前
27秒前
28秒前
28秒前
28秒前
28秒前
小西完成签到 ,获得积分0
28秒前
科目三应助黄超采纳,获得10
28秒前
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714