Examining the Ability of Artificial Neural Networks Machine Learning Models to Accurately Predict Complications Following Posterior Lumbar Spine Fusion

医学 逻辑回归 机器学习 人工神经网络 体质指数 麻醉学 腰椎 骨科手术 人工智能 外科 内科学 麻醉 计算机科学
作者
Jun Kim,Robert Merrill,Varun Arvind,Deepak Kaji,Sara Pasik,Chuma C. Nwachukwu,Luilly Vargas,Nebiyu Osman,Eric K. Oermann,John M. Caridi,Samuel K. Cho
出处
期刊:Spine [Lippincott Williams & Wilkins]
卷期号:43 (12): 853-860 被引量:150
标识
DOI:10.1097/brs.0000000000002442
摘要

A cross-sectional database study.The aim of this study was to train and validate machine learning models to identify risk factors for complications following posterior lumbar spine fusion.Machine learning models such as artificial neural networks (ANNs) are valuable tools for analyzing and interpreting large and complex datasets. ANNs have yet to be used for risk factor analysis in orthopedic surgery.The American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database was queried for patients who underwent posterior lumbar spine fusion. This query returned 22,629 patients, 70% of whom were used to train our models, and 30% were used to evaluate the models. The predictive variables used included sex, age, ethnicity, diabetes, smoking, steroid use, coagulopathy, functional status, American Society for Anesthesiology (ASA) class ≥3, body mass index (BMI), pulmonary comorbidities, and cardiac comorbidities. The models were used to predict cardiac complications, wound complications, venous thromboembolism (VTE), and mortality. Using ASA class as a benchmark for prediction, area under receiver operating curves (AUC) was used to determine the accuracy of our machine learning models.On the basis of AUC values, ANN and LR both outperformed ASA class for predicting all four types of complications. ANN was the most accurate for predicting cardiac complications, and LR was most accurate for predicting wound complications, VTE, and mortality, though ANN and LR had comparable AUC values for predicting all types of complications. ANN had greater sensitivity than LR for detecting wound complications and mortality.Machine learning in the form of logistic regression and ANNs were more accurate than benchmark ASA scores for identifying risk factors of developing complications following posterior lumbar spine fusion, suggesting they are potentially great tools for risk factor analysis in spine surgery.3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘佳焜完成签到,获得积分10
1秒前
丘山发布了新的文献求助10
4秒前
小谢完成签到,获得积分10
6秒前
6秒前
8秒前
宁静致远发布了新的文献求助10
8秒前
10秒前
笨蛋没烦恼完成签到,获得积分10
11秒前
科研通AI5应助U9A采纳,获得10
13秒前
明天见发布了新的文献求助10
14秒前
14秒前
15秒前
知识付费完成签到,获得积分10
16秒前
Lenacici发布了新的文献求助10
17秒前
毕业比耶发布了新的文献求助10
19秒前
20秒前
壮观的白翠完成签到,获得积分10
20秒前
20秒前
Jasper应助莉莉酱采纳,获得10
23秒前
思源应助萤火采纳,获得10
25秒前
AaronDP发布了新的文献求助50
25秒前
笑哦完成签到,获得积分10
27秒前
27秒前
宁静致远完成签到,获得积分10
29秒前
笑哦发布了新的文献求助10
29秒前
30秒前
31秒前
boss发布了新的文献求助100
31秒前
34秒前
善学以致用应助任伟超采纳,获得10
34秒前
难过的丹烟完成签到,获得积分10
35秒前
罗晓倩发布了新的文献求助10
35秒前
英姑应助cslc采纳,获得10
37秒前
37秒前
37秒前
38秒前
萤火发布了新的文献求助10
38秒前
boss完成签到,获得积分10
38秒前
在水一方应助Thy采纳,获得10
39秒前
无奈的醉薇完成签到,获得积分10
40秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993587
求助须知:如何正确求助?哪些是违规求助? 3534299
关于积分的说明 11265206
捐赠科研通 3274074
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712