The influence of temperature, pH value, and solvent on the degradation behavior of astilbin was studied by HPLC. Results showed that the degradation of astilbin was pH and temperature dependent, and the isomerization of astilbin to its three stereoisomers was found. The degradation process followed the first-order kinetics model, and the degradation rate k values increased, whereas half-life (t1/2) values declined with the rise of pH and temperature. The stability of astilbin was related to its B-ring substitution. Engeletin with a 4′-hydroxy-substituted B-ring was more stable than astilbin with a 3′,4′-dihydroxy-substituted B-ring. The stability of astilbin differed depending on the solvent and followed the order 50% ethanol > ethanol > methanol > 50% methanol > water. In cultural media, astilbin was less stable than in water, which may be related to the presence of metal ions. The stability results of astilbin were confirmed in the extraction of dihydroflavonols from Rhizoma Smilacis Glabrae and may have a guiding function in turtle jelly production.