Therapeutic targeting of trained immunity

免疫 医学 计算生物学 药理学 免疫学 生物 免疫系统
作者
Willem J. M. Mulder,Jordi Ochando,Leo A. B. Joosten,Zahi A. Fayad,Mihai G. Netea
出处
期刊:Nature Reviews Drug Discovery [Springer Nature]
卷期号:18 (7): 553-566 被引量:349
标识
DOI:10.1038/s41573-019-0025-4
摘要

Immunotherapy is revolutionizing the treatment of diseases in which dysregulated immune responses have an important role. However, most of the immunotherapy strategies currently being developed engage the adaptive immune system. In the past decade, both myeloid (monocytes, macrophages and dendritic cells) and lymphoid (natural killer cells and innate lymphoid cells) cell populations of the innate immune system have been shown to display long-term changes in their functional programme through metabolic and epigenetic programming. Such reprogramming causes these cells to be either hyperresponsive or hyporesponsive, resulting in a changed immune response to secondary stimuli. This de facto innate immune memory, which has been termed ‘trained immunity’, provides a powerful ‘targeting framework’ to regulate the delicate balance of immune homeostasis, priming, training and tolerance. In this Opinion article, we set out our vision of how to target innate immune cells and regulate trained immunity to achieve long-term therapeutic benefits in a range of immune-related diseases. These include conditions characterized by excessive trained immunity, such as inflammatory and autoimmune disorders, allergies and cardiovascular disease and conditions driven by defective trained immunity, such as cancer and certain infections. Cells in the innate immune system can display adaptive characteristics that lead to increased responsiveness to secondary stimulation by pathogens. This innate immune memory has been termed ‘trained immunity’. Here, Mulder and colleagues describe the mechanisms responsible for the induction of trained immunity and propose strategies to regulate it as a potential treatment of immune-related diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JxJ发布了新的文献求助10
刚刚
香蕉秋寒发布了新的文献求助10
1秒前
达利园完成签到,获得积分10
1秒前
耍酷萝完成签到,获得积分20
1秒前
桐伶发布了新的文献求助10
2秒前
牛马刘完成签到,获得积分10
2秒前
2秒前
3秒前
xiangwang完成签到 ,获得积分10
3秒前
我是老大应助Rainbow7采纳,获得10
3秒前
36456657应助Grace采纳,获得10
4秒前
4秒前
耍酷萝发布了新的文献求助10
4秒前
kkk完成签到,获得积分10
4秒前
明理春天完成签到,获得积分10
6秒前
ok完成签到,获得积分10
6秒前
zhaofw完成签到,获得积分10
6秒前
拼搏的代玉完成签到,获得积分10
6秒前
情怀应助柚子味的诗采纳,获得10
6秒前
小点点发布了新的文献求助10
7秒前
Dawn2000发布了新的文献求助10
8秒前
xiaoweiwei发布了新的文献求助10
9秒前
三月的雨完成签到,获得积分10
9秒前
9秒前
友好小之完成签到 ,获得积分10
10秒前
10秒前
10秒前
风起完成签到 ,获得积分10
10秒前
草莓派完成签到,获得积分10
11秒前
深情的一曲完成签到,获得积分10
11秒前
大个应助牛马刘采纳,获得10
12秒前
小王发布了新的文献求助10
12秒前
迷人的爆米花完成签到,获得积分10
12秒前
13秒前
三月的雨发布了新的文献求助10
13秒前
14秒前
没有伞的青春完成签到 ,获得积分10
16秒前
18秒前
Dawn2000完成签到,获得积分20
18秒前
神公子完成签到,获得积分10
19秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3254378
求助须知:如何正确求助?哪些是违规求助? 2896597
关于积分的说明 8293307
捐赠科研通 2565536
什么是DOI,文献DOI怎么找? 1393084
科研通“疑难数据库(出版商)”最低求助积分说明 652418
邀请新用户注册赠送积分活动 629946