免疫
医学
计算生物学
药理学
免疫学
生物
免疫系统
作者
Willem J. M. Mulder,Jordi Ochando,Leo A. B. Joosten,Zahi A. Fayad,Mihai G. Netea
标识
DOI:10.1038/s41573-019-0025-4
摘要
Immunotherapy is revolutionizing the treatment of diseases in which dysregulated immune responses have an important role. However, most of the immunotherapy strategies currently being developed engage the adaptive immune system. In the past decade, both myeloid (monocytes, macrophages and dendritic cells) and lymphoid (natural killer cells and innate lymphoid cells) cell populations of the innate immune system have been shown to display long-term changes in their functional programme through metabolic and epigenetic programming. Such reprogramming causes these cells to be either hyperresponsive or hyporesponsive, resulting in a changed immune response to secondary stimuli. This de facto innate immune memory, which has been termed ‘trained immunity’, provides a powerful ‘targeting framework’ to regulate the delicate balance of immune homeostasis, priming, training and tolerance. In this Opinion article, we set out our vision of how to target innate immune cells and regulate trained immunity to achieve long-term therapeutic benefits in a range of immune-related diseases. These include conditions characterized by excessive trained immunity, such as inflammatory and autoimmune disorders, allergies and cardiovascular disease and conditions driven by defective trained immunity, such as cancer and certain infections. Cells in the innate immune system can display adaptive characteristics that lead to increased responsiveness to secondary stimulation by pathogens. This innate immune memory has been termed ‘trained immunity’. Here, Mulder and colleagues describe the mechanisms responsible for the induction of trained immunity and propose strategies to regulate it as a potential treatment of immune-related diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI