ISFET
微流控
可穿戴计算机
实验室晶片
材料科学
生物传感器
纳米技术
分析物
制作
基质(水族馆)
晶体管
计算机科学
光电子学
场效应晶体管
嵌入式系统
化学
电气工程
工程类
电压
病理
物理化学
地质学
海洋学
医学
替代医学
作者
Erick Garcia-Cordero,Francesco Bellando,Junrui Zhang,Fabien Wildhaber,Johan Longo,Hoël Guérin,Adrian M. Ionescu
出处
期刊:ACS Nano
[American Chemical Society]
日期:2018-12-13
卷期号:12 (12): 12646-12656
被引量:78
标识
DOI:10.1021/acsnano.8b07413
摘要
Wearable systems could offer noninvasive and real-time solutions for monitoring of biomarkers in human sweat as an alternative to blood testing. Recent studies have demonstrated that the concentration of certain biomarkers in sweat can be directly correlated to their concentrations in blood, making sweat a trusted biofluid candidate for noninvasive diagnostics. We introduce a fully on-chip integrated wearable sweat sensing system to track biochemical information at the surface of the skin in real time. This system heterogeneously integrates, on a single silicon chip, state-of-the-art ultrathin body (UTB) fully depleted silicon-on-insulator (FD-SOI) ISFET sensors with a biocompatible microfluidic interface, to deliver a "lab-on-skin" sensing platform. A full process for the fabrication of this system is proposed in this work and is demonstrated by standard semiconductor fabrication procedures. The system is capable of collecting small volumes of sweat from the skin of a human and posteriorly passively driving the biofluid, by capillary action, to a set of functionalized ISFETs for analysis of pH level and Na+ and K+ concentrations. Drop-casted ion-sensing membranes on different sets of sensors on the same substrate enable multiparameter analysis on the same chip, with small and controlled cross-sensitivities, whereas a miniaturized quasireference electrodes set a stable analyte potential, avoiding the use of a cumbersome external reference electrode. The progress of lab-on-skin technology reported here can lead to autonomous wearable systems enabling real-time continuous monitoring of sweat composition, with applications ranging from medicine to lifestyle behavioral engineering and sports.
科研通智能强力驱动
Strongly Powered by AbleSci AI