Hierarchical Attention Network for Visually-aware Food Recommendation

配方 推荐系统 计算机科学 偏爱 构造(python库) 协同过滤 排名(信息检索) 偏好学习 过程(计算) 个性化 人工智能 情报检索 机器学习 万维网 地理 数学 统计 考古 程序设计语言 操作系统
作者
Xiaoyan Gao,Fuli Feng,Xiangnan He,Heyan Huang,Xinyu Guan,Chong Feng,Zhaoyan Ming,Tat‐Seng Chua
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.1810.05032
摘要

Food recommender systems play an important role in assisting users to identify the desired food to eat. Deciding what food to eat is a complex and multi-faceted process, which is influenced by many factors such as the ingredients, appearance of the recipe, the user's personal preference on food, and various contexts like what had been eaten in the past meals. In this work, we formulate the food recommendation problem as predicting user preference on recipes based on three key factors that determine a user's choice on food, namely, 1) the user's (and other users') history; 2) the ingredients of a recipe; and 3) the descriptive image of a recipe. To address this challenging problem, we develop a dedicated neural network based solution Hierarchical Attention based Food Recommendation (HAFR) which is capable of: 1) capturing the collaborative filtering effect like what similar users tend to eat; 2) inferring a user's preference at the ingredient level; and 3) learning user preference from the recipe's visual images. To evaluate our proposed method, we construct a large-scale dataset consisting of millions of ratings from AllRecipes.com. Extensive experiments show that our method outperforms several competing recommender solutions like Factorization Machine and Visual Bayesian Personalized Ranking with an average improvement of 12%, offering promising results in predicting user preference for food. Codes and dataset will be released upon acceptance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lee完成签到 ,获得积分10
1秒前
perseverance发布了新的文献求助10
2秒前
2秒前
4秒前
wang发布了新的文献求助10
6秒前
随意完成签到 ,获得积分10
6秒前
FashionBoy应助崔文兴采纳,获得10
9秒前
我是老大应助缥缈的小夏采纳,获得10
12秒前
14秒前
方断秋完成签到,获得积分10
15秒前
15秒前
16秒前
烟花应助清禾kat采纳,获得30
16秒前
FUN发布了新的文献求助10
16秒前
酷波er应助beichuanheqi采纳,获得10
16秒前
LLL应助starwan采纳,获得10
17秒前
乐乐应助清脆慕儿采纳,获得10
17秒前
小茗同学发布了新的文献求助10
19秒前
懵懂的翼完成签到,获得积分10
19秒前
19秒前
xiubo128完成签到 ,获得积分10
19秒前
完美世界应助lalalatiancai采纳,获得10
19秒前
崔文兴发布了新的文献求助10
21秒前
宋灵竹完成签到,获得积分10
22秒前
22秒前
欣慰的凡儿完成签到,获得积分10
23秒前
26秒前
27秒前
27秒前
28秒前
邢慧兰完成签到,获得积分10
28秒前
无名老大应助韩同刚采纳,获得60
28秒前
WindDreamer完成签到,获得积分10
29秒前
zhengzhao发布了新的文献求助10
30秒前
萝卜花1968发布了新的文献求助10
30秒前
beichuanheqi完成签到,获得积分10
31秒前
DDDDDD完成签到,获得积分10
31秒前
miemie发布了新的文献求助30
33秒前
爆米花应助嗯,你说得对采纳,获得10
33秒前
大模型应助淡淡的小蜜蜂采纳,获得10
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353002
求助须知:如何正确求助?哪些是违规求助? 2977782
关于积分的说明 8682092
捐赠科研通 2658911
什么是DOI,文献DOI怎么找? 1456009
科研通“疑难数据库(出版商)”最低求助积分说明 674206
邀请新用户注册赠送积分活动 664884