端粒
衰老
细胞周期
转染
下调和上调
流式细胞术
污渍
车站3
癌症研究
细胞生物学
细胞
化学
信号转导
生物
分子生物学
细胞培养
基因
遗传学
作者
Dongwei Cao,Chunming Jiang,Cheng Wan,Miao Zhang,Qingyan Zhang,Min Zhao,Bo Yang,Dalong Zhu,Xiao Han
标识
DOI:10.1007/s11596-018-1942-x
摘要
Diabetic kidney disease (DKD) is a microvascular complication of type 2 diabetes. The study of DKD mechanisms is the most important target for the prevention of DKD. Renal senescence is one of the important pathogeneses for DKD, but the mechanism of renal and cellular senescence is unclear. Decreased expression of circulating miR-126 is associated with the development of DKD and may be a promising blood-based biomarker for DKD. This study is to probe the effect and mechanism of miR-126 on the aging of human glomerular mesangial cells (HGMCs) induced by high glucose. HGMCs were cultured with Roswell Park Memorial Institute (RPMI-1640) in vitro. The effect of high glucose on morphology of HGMCs was observed 72 h after intervention. The cell cycle was examined by flow cytometry. The telomere length was measured by Southern blotting. The expression levels of p53, p21 and Rb proteins in p53-p21-Rb signaling pathway and p-stat1, p-stat3 in JAK/STAT signaling pathway were detected by Western blotting respectively. The expression of miR-126 was examined by qRT-PCR. MiR-126 mimics was transfected into HGMCs. The effects of miR-126 mimics transfection on cell morphology, cell cycle, telomere length, p53, p21, Rb, p-stat1 and p-stat3 were observed. The results showed that high glucose not only arrested the cell cycle in G1 phase but also shortened the telomere length. High glucose led to high expression of p53, p21, Rb, p-stat1 and p-stat3 and premature senescence of HGMCs by activating the telomere-p53-p21-Rb and JAK/STAT signaling pathways. Moreover, the miR-126 was decreased in HGMCs induced by high glucose. It was suggested that the transfection of miR-126 mimics could inhibit the telomere-p53-p21-Rb and JAK/STAT signaling pathway activity in vitro and delay the senescence of HGMCs. The results may serve as a new strategy for the treatment of DKD.
科研通智能强力驱动
Strongly Powered by AbleSci AI