Insight into the energy band alignment of magnetically separable Ag2O/ZnFe2O4 p-n heterostructure with rapid charge transfer assisted visible light photocatalysis

异质结 光催化 化学 可见光谱 降级(电信) 复合数 制作 催化作用 电子 密度泛函理论 电子转移 光电子学 纳米技术 光化学 化学工程 材料科学 计算化学 物理 复合材料 有机化学 工程类 病理 电信 医学 量子力学 替代医学 计算机科学
作者
Hai Guo,Huai-Yuan Niu,Chao Liang,Cheng‐Gang Niu,Da-Wei Huang,Lei Zhang,Ning Tang,Yang Yang,Chengyang Feng,Guangming Zeng
出处
期刊:Journal of Catalysis [Elsevier]
卷期号:370: 289-303 被引量:195
标识
DOI:10.1016/j.jcat.2019.01.009
摘要

The fabrication of highly efficient catalysts with easy recyclability has received great attention in the development of realistic photocatalytic applications. Herein, a magnetically separable Ag2O/ZnFe2O4 p-n heterostructure photocatalyst was fabricated and utilized for the degradation of BPA under visible light irradiation. Results show that the obtained AZ-3 composite possesses the optimal performance, which is about 2.33-fold and 34.45-fold higher than that of Ag2O and ZnFe2O4, respectively. The enhanced performance is attributed to the rapid separation of photogenerated electrons and holes caused by the built-in electric field between p-type Ag2O and n-type ZnFe2O4, as detailedly evidenced by photoelectrochemical measurements. Moreover, density functional theory (DFT) calculations show that the electrons around the contact interface of Ag2O and ZnFe2O4 will be redistributed after their hybridization, while the investigation on energy band alignment further indicates that a type-II band alignment with ΔECBO = 0.16 eV and ΔEVBO = 0.65 eV is formed in this p-n heterostructure, which provides a solid support for the reaction mechanism. This work gives deep insights into the charge transfer properties of p-n heterostructure systems and opens new vistas for the construction of highly efficient and magnetically separable photocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
weijiuhua完成签到,获得积分10
1秒前
拼搏亦绿发布了新的文献求助10
1秒前
完美世界应助卿莞尔采纳,获得10
1秒前
learner发布了新的文献求助10
1秒前
2秒前
2秒前
123发布了新的文献求助10
3秒前
chentong完成签到,获得积分10
3秒前
风语发布了新的文献求助20
3秒前
美梦成真完成签到,获得积分10
3秒前
念烟完成签到,获得积分10
4秒前
CXC发布了新的文献求助10
4秒前
CodeCraft应助拉长的人雄采纳,获得10
4秒前
漫漫完成签到,获得积分10
4秒前
上官若男应助受伤雁荷采纳,获得10
4秒前
czcmh应助飞奔向你采纳,获得30
5秒前
FashionBoy应助杨皓婷采纳,获得10
5秒前
5秒前
6秒前
爆米花应助白白白采纳,获得20
6秒前
Orange应助Qn采纳,获得10
6秒前
7秒前
隐形曼青应助YiWei采纳,获得10
7秒前
hihihihihi完成签到 ,获得积分10
7秒前
CNAxiaozhu7应助1v采纳,获得10
7秒前
义气珩完成签到,获得积分10
7秒前
风中亦玉发布了新的文献求助10
8秒前
8秒前
儒雅山灵完成签到,获得积分20
8秒前
mzhnx完成签到,获得积分10
9秒前
zhtgang完成签到,获得积分10
10秒前
charllar发布了新的文献求助10
10秒前
小小怪下士完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
11秒前
maomaoqiu发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532022
求助须知:如何正确求助?哪些是违规求助? 4620823
关于积分的说明 14574972
捐赠科研通 4560552
什么是DOI,文献DOI怎么找? 2498894
邀请新用户注册赠送积分活动 1478828
关于科研通互助平台的介绍 1450125