Estimating psychological networks and their accuracy: A tutorial paper

中心性 计算机科学 理论(学习稳定性) 领域(数学) 重采样 网络科学 变化(天文学) 人工智能 机器学习 人气 数据挖掘 采样(信号处理) 复杂网络 数据科学 统计 心理学 数学 社会心理学 滤波器(信号处理) 物理 万维网 天体物理学 纯数学 计算机视觉
作者
Sacha Epskamp,Denny Borsboom,Eiko I. Fried
出处
期刊:Behavior Research Methods [Springer Science+Business Media]
卷期号:50 (1): 195-212 被引量:3482
标识
DOI:10.3758/s13428-017-0862-1
摘要

The usage of psychological networks that conceptualize behavior as a complex interplay of psychological and other components has gained increasing popularity in various research fields. While prior publications have tackled the topics of estimating and interpreting such networks, little work has been conducted to check how accurate (i.e., prone to sampling variation) networks are estimated, and how stable (i.e., interpretation remains similar with less observations) inferences from the network structure (such as centrality indices) are. In this tutorial paper, we aim to introduce the reader to this field and tackle the problem of accuracy under sampling variation. We first introduce the current state-of-the-art of network estimation. Second, we provide a rationale why researchers should investigate the accuracy of psychological networks. Third, we describe how bootstrap routines can be used to (A) assess the accuracy of estimated network connections, (B) investigate the stability of centrality indices, and (C) test whether network connections and centrality estimates for different variables differ from each other. We introduce two novel statistical methods: for (B) the correlation stability coefficient, and for (C) the bootstrapped difference test for edge-weights and centrality indices. We conducted and present simulation studies to assess the performance of both methods. Finally, we developed the free R-package bootnet that allows for estimating psychological networks in a generalized framework in addition to the proposed bootstrap methods. We showcase bootnet in a tutorial, accompanied by R syntax, in which we analyze a dataset of 359 women with posttraumatic stress disorder available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tnokp发布了新的文献求助10
刚刚
CodeCraft应助寒冷书竹采纳,获得10
刚刚
顾矜应助熬夜的桃子采纳,获得10
刚刚
叶子完成签到,获得积分10
刚刚
aliao完成签到,获得积分10
1秒前
桃之夭夭完成签到,获得积分10
1秒前
1秒前
1秒前
xxxx完成签到,获得积分10
2秒前
冬瓜有内涵呐完成签到,获得积分10
2秒前
于彤完成签到,获得积分20
2秒前
今后应助lucifer123采纳,获得10
3秒前
麦辣鸡腿堡完成签到,获得积分10
3秒前
福star高照完成签到,获得积分10
3秒前
3秒前
温言叮叮铛完成签到,获得积分10
3秒前
柠檬不萌完成签到,获得积分10
3秒前
溪风不渡完成签到 ,获得积分10
4秒前
4秒前
小马甲应助冷酷丹翠采纳,获得10
4秒前
超帅的月光完成签到 ,获得积分10
5秒前
小杨杨完成签到,获得积分10
5秒前
ghfg发布了新的文献求助10
5秒前
llll完成签到 ,获得积分10
5秒前
zxx5313491完成签到,获得积分10
5秒前
丶丶完成签到,获得积分10
6秒前
充电宝应助JIE采纳,获得10
6秒前
无聊的万天完成签到,获得积分10
6秒前
小白科研完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
ypcsjj完成签到,获得积分10
7秒前
7秒前
hhhh完成签到,获得积分10
8秒前
8秒前
Fiona完成签到,获得积分10
9秒前
qwp完成签到,获得积分10
9秒前
msy完成签到,获得积分10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968719
求助须知:如何正确求助?哪些是违规求助? 3513608
关于积分的说明 11168681
捐赠科研通 3248960
什么是DOI,文献DOI怎么找? 1794573
邀请新用户注册赠送积分活动 875194
科研通“疑难数据库(出版商)”最低求助积分说明 804716