Characterizing the Biomechanical Properties of the Pubovisceralis Muscle Using a Genetic Algorithm and the Finite Element Method

有限元法 算法 计算机科学 遗传算法 反向 数学 结构工程 几何学 工程类 机器学习
作者
Maria Elisabete Silva,Marco Parente,Sofia Brandão,Teresa Mascarenhas,Renato Natal Jorge
出处
期刊:Journal of biomechanical engineering [ASME International]
卷期号:141 (1) 被引量:11
标识
DOI:10.1115/1.4041524
摘要

To better understand the disorders in the pelvic cavity associated with the pelvic floor muscles (PFM) using computational models, it is fundamental to identify the biomechanical properties of these muscles. For this purpose, we implemented an optimization scheme, involving a genetic algorithm (GA) and an inverse finite element analysis (FEA), in order to estimate the material properties of the pubovisceralis muscle (PVM). The datasets of five women were included in this noninvasive analysis. The numerical models of the PVM were built from static axial magnetic resonance (MR) images, and the hyperplastic Mooney-Rivlin constitutive model was used. The material parameters obtained were compared with the ones established through a similar optimization scheme, using Powell's algorithm. To validate the values of the material parameters that characterize the passive behavior of the PVM, the displacements obtained via the numerical models with both methods were compared with dynamic MR images acquired during Valsalva maneuver. The material parameters (c1 and c2) were higher for the GA than for Powell's algorithm, but when comparing the magnitude of the displacements in millimeter of the PVM, there was only a 5% difference, and 4% for the principal logarithmic strain. The GA allowed estimating the in vivo biomechanical properties of the PVM of different subjects, requiring a lower number of simulations when compared to Powell's algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助奋斗灵波采纳,获得10
刚刚
1秒前
慌糖完成签到,获得积分10
2秒前
liu完成签到,获得积分10
4秒前
柔弱凡松发布了新的文献求助10
6秒前
6秒前
8秒前
QQQQ发布了新的文献求助20
8秒前
zy完成签到 ,获得积分10
8秒前
坦率若颜发布了新的文献求助10
12秒前
terence应助YYJ25采纳,获得10
13秒前
15秒前
17秒前
17秒前
JianminLuo完成签到 ,获得积分10
18秒前
慌糖发布了新的文献求助10
18秒前
贪玩语蓉完成签到,获得积分10
19秒前
20秒前
heidi发布了新的文献求助10
21秒前
21秒前
CipherSage应助昵称采纳,获得10
21秒前
所得皆所愿完成签到 ,获得积分10
21秒前
英俊的铭应助浙江嘉兴采纳,获得10
23秒前
caoyy发布了新的文献求助10
24秒前
26秒前
花陵完成签到 ,获得积分10
26秒前
田様应助youjiang采纳,获得10
26秒前
lixm发布了新的文献求助10
27秒前
28秒前
春眠不觉小小酥完成签到,获得积分10
29秒前
29秒前
29秒前
JerryZ发布了新的文献求助10
30秒前
30秒前
wewe发布了新的文献求助30
33秒前
昵称发布了新的文献求助10
33秒前
34秒前
hdd完成签到,获得积分10
34秒前
irisjlj发布了新的文献求助10
34秒前
有人应助科研通管家采纳,获得10
36秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851