Characterizing the Biomechanical Properties of the Pubovisceralis Muscle Using a Genetic Algorithm and the Finite Element Method

有限元法 算法 计算机科学 遗传算法 反向 数学 结构工程 几何学 工程类 机器学习
作者
Maria Elisabete Silva,Marco Parente,Sofia Brandão,Teresa Mascarenhas,Renato Natal Jorge
出处
期刊:Journal of biomechanical engineering [ASM International]
卷期号:141 (1) 被引量:11
标识
DOI:10.1115/1.4041524
摘要

To better understand the disorders in the pelvic cavity associated with the pelvic floor muscles (PFM) using computational models, it is fundamental to identify the biomechanical properties of these muscles. For this purpose, we implemented an optimization scheme, involving a genetic algorithm (GA) and an inverse finite element analysis (FEA), in order to estimate the material properties of the pubovisceralis muscle (PVM). The datasets of five women were included in this noninvasive analysis. The numerical models of the PVM were built from static axial magnetic resonance (MR) images, and the hyperplastic Mooney-Rivlin constitutive model was used. The material parameters obtained were compared with the ones established through a similar optimization scheme, using Powell's algorithm. To validate the values of the material parameters that characterize the passive behavior of the PVM, the displacements obtained via the numerical models with both methods were compared with dynamic MR images acquired during Valsalva maneuver. The material parameters (c1 and c2) were higher for the GA than for Powell's algorithm, but when comparing the magnitude of the displacements in millimeter of the PVM, there was only a 5% difference, and 4% for the principal logarithmic strain. The GA allowed estimating the in vivo biomechanical properties of the PVM of different subjects, requiring a lower number of simulations when compared to Powell's algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助苹果板凳采纳,获得10
刚刚
轻松的惜芹应助等等采纳,获得10
刚刚
大模型应助DrYang采纳,获得10
1秒前
养恩完成签到,获得积分10
1秒前
1秒前
boluo666完成签到 ,获得积分10
2秒前
Ava应助Crystal采纳,获得10
2秒前
迷人煎饼发布了新的文献求助10
2秒前
3秒前
Jack完成签到,获得积分10
4秒前
5秒前
5秒前
桃子牛肉酱完成签到 ,获得积分10
6秒前
gbylyf发布了新的文献求助10
7秒前
normankasimodo完成签到,获得积分10
7秒前
李梦发布了新的文献求助30
7秒前
U9A发布了新的文献求助10
8秒前
FashionBoy应助raoxray采纳,获得10
8秒前
9秒前
9秒前
凤凰山发布了新的文献求助10
10秒前
善学以致用应助黄昊翔采纳,获得10
10秒前
Lucas应助ivyjianjie采纳,获得10
10秒前
12秒前
Ava应助Messi采纳,获得10
13秒前
鞠佳园发布了新的文献求助10
13秒前
田様应助20250702采纳,获得30
13秒前
14秒前
婕婕子完成签到,获得积分10
15秒前
16秒前
kk发布了新的文献求助10
17秒前
17秒前
大个应助拼命十三娘采纳,获得10
18秒前
月亮不睡我不睡完成签到,获得积分20
18秒前
迷人煎饼完成签到,获得积分20
18秒前
坦率的水云关注了科研通微信公众号
19秒前
小蘑菇应助库库里里大采纳,获得10
19秒前
19秒前
AURORA98发布了新的文献求助10
19秒前
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967809
求助须知:如何正确求助?哪些是违规求助? 3512946
关于积分的说明 11165553
捐赠科研通 3247977
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578