A machine learning-based prediction model of H3K27M mutations in brainstem gliomas using conventional MRI and clinical features

医学 比例危险模型 回顾性队列研究 危险系数 置信区间 肿瘤科 内科学 核医学
作者
Changcun Pan,Jia Liu,Jie Tang,Xin Chen,Chen Fang,Yadong Wu,Yibo Geng,Changwu Xu,Xinran Zhang,Zhen Wu,Peiyi Gao,Junting Zhang,Hai Yan,Hongen Liao,Liwei Zhang
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:130: 172-179 被引量:37
标识
DOI:10.1016/j.radonc.2018.07.011
摘要

Background H3K27M is the most frequent mutation in brainstem gliomas (BSGs), and it has great significance in the differential diagnosis, prognostic prediction and treatment strategy selection of BSGs. There has been a lack of reliable noninvasive methods capable of accurately predicting H3K27M mutations in BSGs. Methods A total of 151 patients with newly diagnosed BSGs were included in this retrospective study. The H3K27M mutation status was obtained by whole-exome, whole-genome or Sanger’s sequencing. A total of 1697 features, including 6 clinical parameters and 1691 imaging features, were extracted from pre- and post-contrast T1-weighted and T2-weighted images. Using a random forest algorithm, 36 selected MR image features were integrated with 3 selected clinical features to generate a model that was predictive of H3K27M mutations. Additionally, a simplified prediction model comprising the Karnofsky Performance Status (KPS) at diagnosis, symptom duration at diagnosis and edge sharpness on T2 was established for practical clinical utility using the least squares estimation method. Results H3K27M mutation was an independent prognostic factor that conferred a worse prognosis (p = 0.01, hazard ratio = 3.0, 95% confidence interval [CI], 1.57–5.74). The machine learning-based model achieved an accuracy of 84.44% (area under the curve [AUC] = 0.8298) in the test cohort. The simplified model achieved an AUC of 0.7839 in the test cohort. Conclusions Using conventional MRI and clinical features, we established a machine learning-based model with high accuracy and a simplified model with improved clinical utility to predict H3K27M mutations in BSGs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
丸子完成签到 ,获得积分10
4秒前
Accept完成签到,获得积分10
4秒前
匆匆完成签到,获得积分10
5秒前
墨瞳完成签到,获得积分10
5秒前
Keyuuu30完成签到,获得积分0
6秒前
甜甜醉波完成签到,获得积分10
7秒前
poplar完成签到,获得积分10
8秒前
CodeCraft应助欧锡萍采纳,获得10
8秒前
lvlei发布了新的文献求助10
8秒前
研友_892kOL完成签到,获得积分10
8秒前
yaocx完成签到,获得积分10
8秒前
鱼鱼鱼鱼鱼完成签到 ,获得积分10
8秒前
10秒前
今年我必胖20斤完成签到,获得积分10
11秒前
秋婷完成签到 ,获得积分10
11秒前
Tonald Yang完成签到,获得积分20
12秒前
14秒前
14秒前
16秒前
酷酷小子完成签到 ,获得积分10
16秒前
茉莉是个饱饱完成签到,获得积分10
17秒前
陈无敌完成签到 ,获得积分10
17秒前
横A完成签到 ,获得积分10
19秒前
25秒前
布知道完成签到 ,获得积分10
26秒前
Kaimori完成签到,获得积分10
26秒前
28秒前
苏素完成签到,获得积分10
29秒前
辛勤的刺猬完成签到 ,获得积分10
29秒前
火星上的泡芙完成签到,获得积分10
30秒前
zzg发布了新的文献求助10
30秒前
const完成签到,获得积分10
30秒前
无限的千凝完成签到 ,获得积分10
30秒前
Yvan完成签到,获得积分10
30秒前
31秒前
不争馒头争口气完成签到,获得积分10
31秒前
小马甲应助dyd采纳,获得50
32秒前
gavin完成签到 ,获得积分10
32秒前
小高同学完成签到,获得积分10
32秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729213
求助须知:如何正确求助?哪些是违规求助? 3274358
关于积分的说明 9985078
捐赠科研通 2989562
什么是DOI,文献DOI怎么找? 1640619
邀请新用户注册赠送积分活动 779260
科研通“疑难数据库(出版商)”最低求助积分说明 748145