卵母细胞
重编程
褪黑素
体外成熟
生物
男科
胚胎
DNA甲基化
表观遗传学
细胞生物学
遗传学
基因
内分泌学
基因表达
医学
作者
Quanli An,Wei Peng,Yulin Cheng,Zhenzhen Lu,Chuan Zhou,Yongqing Zhang,Jianmin Su
摘要
Abstract Oocyte quality, which is directly related to reprogramming competence, is a major important limiting factor in animal cloning efficiency. Compared with oocytes matured in vivo, in vitro matured oocytes exhibit lower oocyte quality and reprogramming competence primarily because of their higher levels of reactive oxygen species. In this study, we investigate whether supplementing the oocyte maturation medium with melatonin, a free radical scavenger, could improve oocyte quality and reprogramming competence. We found that 10 −9 M melatonin effectively alleviated oxidative stress, markedly decreased early apoptosis levels, recovered the integrity of mitochondria, ameliorated the spindle assembly and chromosome alignment in oocytes, and significantly promoted subsequent cloned embryo development in vitro. We also analyzed the effects of melatonin on epigenetic modifications in bovine oocytes. Melatonin increased the global H3K9 acetylation levels, reduced the H3K9 methylation levels, and minimally affected DNA methylation and hydroxymethylation. Genome‐wide expression analysis of genes in melatonin‐treated and nontreated oocytes was also conducted by high‐throughput RNA sequencing. Our results indicated that melatonin ameliorates oocyte oxidative stress and improves subsequent in vitro development of bovine cloned embryos.
科研通智能强力驱动
Strongly Powered by AbleSci AI