吞吐量
纳米医学
计算机科学
高通量筛选
纳米技术
纳米颗粒
生物
材料科学
生物信息学
电信
无线
作者
Gokay Yamankurt,Eric J. Berns,Albert Xue,Andrew Lee,Neda Bagheri,Milan Mrksich,Chad A. Mirkin
标识
DOI:10.1038/s41551-019-0351-1
摘要
Only a tiny fraction of the nanomedicine-design space has been explored, owing to the structural complexity of nanomedicines and the lack of relevant high-throughput synthesis and analysis methods. Here, we report a methodology for determining structure-activity relationships and design rules for spherical nucleic acids (SNAs) functioning as cancer-vaccine candidates. First, we identified ~1,000 candidate SNAs on the basis of reasonable ranges for 11 design parameters that can be systematically and independently varied to optimize SNA performance. Second, we developed a high-throughput method for making SNAs at the picomolar scale in a 384-well format, and used a mass spectrometry assay to rapidly measure SNA immune activation. Third, we used machine learning to quantitatively model SNA immune activation and identify the minimum number of SNAs needed to capture optimum structure-activity relationships for a given SNA library. Our methodology is general, can reduce the number of nanoparticles that need to be tested by an order of magnitude, and could serve as a screening tool for the development of nanoparticle therapeutics.
科研通智能强力驱动
Strongly Powered by AbleSci AI