软物质
软机器人
计算机科学
活性物质
可扩展性
平面的
制作
机器人学
人工智能
纳米技术
机器人
机械工程
材料科学
工程类
计算机图形学(图像)
细胞生物学
病理
生物
数据库
医学
替代医学
胶体
化学工程
作者
Guo Zhan Lum,Ye Zhou,Xiaoguang Dong,Hamidreza Marvi,Önder Erin,Wenqi Hu,Metin Sitti
标识
DOI:10.1073/pnas.1608193113
摘要
Significance At small scales, shape-programmable magnetic materials have significant potential to achieve mechanical functionalities that are unattainable by traditional miniature machines. Unfortunately, these materials have only been programmed for a small number of specific applications, as previous work can only rely on human intuition to approximate the required magnetization profile and actuating magnetic fields for such materials. Here, we propose a universal programming methodology that can automatically generate the desired magnetization profile and actuating fields for soft materials to achieve new time-varying shapes. The proposed method can enable other researchers to fully capitalize the potential of shape-programming technologies, allowing them to create a wide range of novel soft active surfaces and devices that are critical in robotics, material science, and medicine.
科研通智能强力驱动
Strongly Powered by AbleSci AI