DIII-D公司
物理
自举电流
外推法
托卡马克
等离子体
环面
聚变能
BETA(编程语言)
核物理学
中性束注入
核工程
稳态(化学)
磁聚变
原子物理学
化学
计算机科学
工程类
数学
数学分析
物理化学
程序设计语言
作者
J.P. Qian,A. M. Garofalo,Xianzu Gong,Q. Ren,S. Ding,W.M. Solomon,G.S. Xu,B. A. Grierson,Wenfeng Guo,C. T. Holcomb,J. McClenaghan,G. R. McKee,Chengkang Pan,J. Huang,G.M. Staebler,Baonian Wan
出处
期刊:Nuclear Fusion
[IOP Publishing]
日期:2017-03-20
卷期号:57 (5): 056008-056008
被引量:18
标识
DOI:10.1088/1741-4326/aa626a
摘要
Recent EAST/DIII-D joint experiments on the high poloidal beta regime in DIII-D have extended operation with internal transport barriers (ITBs) and excellent energy confinement (H 98y2 ~ 1.6) to higher plasma current, for lower q 95 ≤ 7.0, and more balanced neutral beam injection (NBI) (torque injection < 2 Nm), for lower plasma rotation than previous results (Garofalo et al, IAEA 2014, Gong et al 2014 IAEA Int. Conf. on Fusion Energy). Transport analysis and experimental measurements at low toroidal rotation suggest that the E × B shear effect is not key to the ITB formation in these high discharges. Experiments and TGLF modeling show that the Shafranov shift has a key stabilizing effect on turbulence. Extrapolation of the DIII-D results using a 0D model shows that with the improved confinement, the high bootstrap fraction regime could achieve fusion gain Q = 5 in ITER at ~ 2.9 and q 95 ~ 7. With the optimization of q(0), the required improved confinement is achievable when using 1.5D TGLF-SAT1 for transport simulations. Results reported in this paper suggest that the DIII-D high scenario could be a candidate for ITER steady state operation.
科研通智能强力驱动
Strongly Powered by AbleSci AI