物理
机械波
束缚态
电磁辐射
电磁频谱
压电
波传播
纵波
量子
经典力学
声学
量子力学
作者
Chia Wei Hsu,Bo Zhen,A. Douglas Stone,John D. Joannopoulos,Marin Soljačić
标识
DOI:10.1038/natrevmats.2016.48
摘要
Bound states in the continuum (BICs) are waves that remain localized even though they coexist with a continuous spectrum of radiating waves that can carry energy away. Their very existence defies conventional wisdom. Although BICs were first proposed in quantum mechanics, they are a general wave phenomenon and have since been identified in electromagnetic waves, acoustic waves in air, water waves and elastic waves in solids. These states have been studied in a wide range of material systems, such as piezoelectric materials, dielectric photonic crystals, optical waveguides and fibres, quantum dots, graphene and topological insulators. In this Review, we describe recent developments in this field with an emphasis on the physical mechanisms that lead to BICs across seemingly very different materials and types of waves. We also discuss experimental realizations, existing applications and directions for future work. The fascinating wave phenomenon of ‘bound states in the continuum’ spans different material and wave systems, including electron, electromagnetic and mechanical waves. In this Review, we focus on the common physical mechanisms underlying these bound states, whilst also discussing recent experimental realizations, current applications and future opportunities for research.
科研通智能强力驱动
Strongly Powered by AbleSci AI