手征异常
Weyl半金属
磁电阻
物理
凝聚态物理
半金属
磁场
异常(物理)
量子振荡
望远镜
费米面
电子
拓扑(电路)
量子力学
费米子
带隙
组合数学
数学
作者
Chandra Shekhar,Frank Arnold,Shu-Chun Wu,Yan Sun,Marcus Schmidt,Nitesh Kumar,Adolfo G. Grushin,Jens H. Bardarson,Ricardo dos Reis,Marcel Naumann,Michael Baenitz,Horst Borrmann,Michael Nicklas,Elena Hassinger,Claudia Felser,Yan Sun
摘要
Weyl semimetals (WSMs) are topological quantum states wherein the electronic bands linearly disperse around pairs of nodes, the Weyl points, of fixed (left or right) chirality. The recent discovery of WSM materials triggered an experimental search for the exotic quantum phenomenon known as the chiral anomaly. Via the chiral anomaly nonorthogonal electric and magnetic fields induce a chiral density imbalance that results in an unconventional negative longitudinal magnetoresistance, the chiral magnetic effect. Recent theoretical work suggests that this effect does not require well-defined Weyl nodes. Experimentally however, it remains an open question to what extent it survives when chirality is not well-defined, for example when the Fermi energy is far away from the Weyl points. Here, we establish the detailed Fermi surface topology of the recently identified WSM TaP via a combination of angle-resolved quantum oscillation spectra and band structure calculations. The Fermi surface forms spin-polarized banana-shaped electron and hole pockets attached to pairs of Weyl points. Although the chiral anomaly is therefore ill-defined, we observe a large negative magnetoresistance (NMR) appearing for collinear magnetic and electric fields as observed in other WSMs. In addition, we show experimental signatures indicating that such longitudinal magnetoresistance measurements can be affected by an inhomogeneous current distribution inside the sample in a magnetic field. Our results provide a clear framework how to detect the chiral magnetic effect.
科研通智能强力驱动
Strongly Powered by AbleSci AI