材料科学
钙钛矿(结构)
卤化物
双层
图层(电子)
化学工程
光电子学
离子键合
纳米技术
离子
化学
膜
无机化学
生物化学
工程类
有机化学
作者
Mohamed M. Elsenety,Μαρία Αντωνιάδου,Nikolaos Balis,Andreas Kaltzoglou,Labrini Sygellou,Anastasios Stergiou,Nikos Tagmatarchis,Polycarpos Falaras
出处
期刊:ACS applied energy materials
[American Chemical Society]
日期:2020-02-05
卷期号:3 (3): 2465-2477
被引量:44
标识
DOI:10.1021/acsaem.9b02117
摘要
Mixed halide hybrid perovskites are strong candidates for fabrication of efficient, stable and reproducible perovskite solar cells (PSCs). To restrain intrinsic volatility and ionic migration effects, we report for the first time a dimensionality engineering approach consisting of a (FA/MA/Cs)PbI3–xBrx/(CH3)3SPbI3(3D/1D) perovskite bilayer architecture, fabricated exclusively with solution processes. XRPD analysis showed no degradation of the 3D/1D composite structure after more than one month of exposure in ambient conditions, in contrast to the reference 3D samples (sole (FA/MA/Cs)PbI3–xBrx) which gradually decomposed to PbI2. The 3D/1D bilayer structure further optimizes the corresponding absorber/hole transporting layer (HTL) interface of the PSCs, since the (FA/MA/Cs)PbI3–xBrx perovskite layer acts as the primary absorber and the (CH3)3SPbI3 top layer plays the role of a barrier against ionic migration/charge carrier recombination. The latter leads to a significant stability improvement for nonsealed devices both under ambient conditions and light stress, underscoring the potential of interface engineering for developing highly efficient and stable PSCs based on functional 3D/1D perovskite bilayers.
科研通智能强力驱动
Strongly Powered by AbleSci AI