DC Arc-Fault Detection Based on Empirical Mode Decomposition of Arc Signatures and Support Vector Machine

电弧故障断路器 断层(地质) 弧(几何) 希尔伯特-黄变换 电力系统 噪音(视频) 电子工程 工程类 支持向量机 计算机科学 干扰(通信) 故障检测与隔离 功率(物理) 电气工程 短路 电压 滤波器(信号处理) 人工智能 频道(广播) 地质学 物理 图像(数学) 量子力学 地震学 执行机构 机械工程
作者
Wenchao Miao,Qi Xu,K.H. Lam,Philip W. T. Pong,H. Vincent Poor
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:21 (5): 7024-7033 被引量:84
标识
DOI:10.1109/jsen.2020.3041737
摘要

Protection devices are extensively utilized in direct current (DC) systems to ensure their normal operation and safety. However, series arc faults that establish current paths in the air between conductors introduce arc impedance to the system. Consequently, they can result in a decrease of current, and thus conventional protection devices may not be triggered. Undetected series arc faults can cause malfunctions and even lead to fire hazards. Therefore, a series arc-fault detection system is essential to DC systems to operate reliably and efficiently. In this paper, a series arc-fault detection system based on arc time-frequency signatures extracted by a modified empirical mode decomposition (EMD) technique and using a support vector machine (SVM) algorithm in decision making is proposed for DC systems. The oscillatory frequencies from the arc current are decomposed by the EMD with an analysis of the Hurst exponent (H) to reject interference from the power electronics noise. H analyzes the trend of a signal and the intrinsic oscillations of the signal are those with values of H larger than 1/2. Comparing to traditional filters or wavelet transforms, this method does not require knowledge of the frequency range of the interference which varies from system to system. The capability and applicability of the proposed technique are validated in a photovoltaic system. The effectiveness of arc-fault detection is significantly improved by this technique because it can acquire sufficient and accurate arc signatures and it does not need to predefine various thresholds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KZxxx完成签到,获得积分20
刚刚
1秒前
肥肥凤梨完成签到,获得积分10
1秒前
时尚羿完成签到,获得积分20
1秒前
2秒前
2秒前
hhh发布了新的文献求助10
2秒前
小糯发布了新的文献求助10
2秒前
3秒前
SciGPT应助xinanan采纳,获得10
4秒前
4秒前
5秒前
niluofan发布了新的文献求助10
5秒前
6秒前
幸福羽毛发布了新的文献求助10
7秒前
CodeCraft应助忐忑的如曼采纳,获得10
7秒前
7秒前
小鱼完成签到,获得积分10
7秒前
乐观振家发布了新的文献求助10
8秒前
儒雅不弱发布了新的文献求助10
9秒前
天天快乐应助bofu采纳,获得10
9秒前
卓儿完成签到,获得积分10
9秒前
认真涵瑶发布了新的文献求助10
11秒前
wankai发布了新的文献求助10
11秒前
852应助阳光白羊采纳,获得10
12秒前
nini完成签到,获得积分10
12秒前
奋斗的夏柳完成签到 ,获得积分10
13秒前
无畏完成签到 ,获得积分10
13秒前
13秒前
jason完成签到,获得积分10
14秒前
月yue发布了新的文献求助10
14秒前
朴素的招牌完成签到,获得积分10
14秒前
15秒前
仁清完成签到,获得积分10
15秒前
SciGPT应助认真的灵枫采纳,获得10
15秒前
Chloe完成签到,获得积分10
16秒前
16秒前
卢敏明发布了新的文献求助10
16秒前
爱笑的傲薇完成签到,获得积分10
17秒前
认真涵瑶完成签到,获得积分20
17秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734840
求助须知:如何正确求助?哪些是违规求助? 3278768
关于积分的说明 10011520
捐赠科研通 2995441
什么是DOI,文献DOI怎么找? 1643442
邀请新用户注册赠送积分活动 781187
科研通“疑难数据库(出版商)”最低求助积分说明 749300