Additive manufacturing of ultrafine-grained high-strength titanium alloys

等轴晶 材料科学 微观结构 钛合金 冶金 选择性激光熔化 近净形状 复合材料 合金
作者
Duyao Zhang,Dong Qiu,Mark A. Gibson,Yufeng Zheng,Hamish L. Fraser,David H. StJohn,Mark Easton
出处
期刊:Nature [Springer Nature]
卷期号:576 (7785): 91-95 被引量:699
标识
DOI:10.1038/s41586-019-1783-1
摘要

Additive manufacturing, often known as three-dimensional (3D) printing, is a process in which a part is built layer-by-layer and is a promising approach for creating components close to their final (net) shape. This process is challenging the dominance of conventional manufacturing processes for products with high complexity and low material waste1. Titanium alloys made by additive manufacturing have been used in applications in various industries. However, the intrinsic high cooling rates and high thermal gradient of the fusion-based metal additive manufacturing process often leads to a very fine microstructure and a tendency towards almost exclusively columnar grains, particularly in titanium-based alloys1. (Columnar grains in additively manufactured titanium components can result in anisotropic mechanical properties and are therefore undesirable2.) Attempts to optimize the processing parameters of additive manufacturing have shown that it is difficult to alter the conditions to promote equiaxed growth of titanium grains3. In contrast with other common engineering alloys such as aluminium, there is no commercial grain refiner for titanium that is able to effectively refine the microstructure. To address this challenge, here we report on the development of titanium–copper alloys that have a high constitutional supercooling capacity as a result of partitioning of the alloying element during solidification, which can override the negative effect of a high thermal gradient in the laser-melted region during additive manufacturing. Without any special process control or additional treatment, our as-printed titanium–copper alloy specimens have a fully equiaxed fine-grained microstructure. They also display promising mechanical properties, such as high yield strength and uniform elongation, compared to conventional alloys under similar processing conditions, owing to the formation of an ultrafine eutectoid microstructure that appears as a result of exploiting the high cooling rates and multiple thermal cycles of the manufacturing process. We anticipate that this approach will be applicable to other eutectoid-forming alloy systems, and that it will have applications in the aerospace and biomedical industries. Titanium–copper alloys with fully equiaxed grains and a fine microstructure are realized via an additive manufacturing process that exploits high cooling rates and multiple thermal cycles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
记忆发布了新的文献求助10
2秒前
研研研完成签到,获得积分10
2秒前
潇洒花生完成签到 ,获得积分10
2秒前
2秒前
BioNiuma完成签到,获得积分10
3秒前
科研通AI2S应助SFYIII采纳,获得10
3秒前
6秒前
6秒前
风的季节完成签到,获得积分0
6秒前
单纯芹菜发布了新的文献求助10
7秒前
马麻薯完成签到,获得积分10
7秒前
8秒前
kkkkkkk发布了新的文献求助10
14秒前
整齐泥猴桃完成签到 ,获得积分10
16秒前
沉默的红牛完成签到 ,获得积分10
16秒前
动听的乐瑶完成签到,获得积分10
18秒前
桐桐应助xzy采纳,获得10
22秒前
小蘑菇应助互助遵法尚德采纳,获得10
23秒前
24秒前
Frieren完成签到 ,获得积分10
24秒前
24秒前
卜乌完成签到,获得积分10
25秒前
25秒前
科研通AI2S应助SFYIII采纳,获得10
27秒前
奶黄包完成签到,获得积分10
27秒前
Mr.Jian完成签到 ,获得积分10
28秒前
29秒前
我是老大应助mmmaple采纳,获得10
29秒前
29秒前
hzf发布了新的文献求助10
30秒前
BCKT完成签到,获得积分10
31秒前
xzy完成签到,获得积分10
31秒前
魏宏宇完成签到 ,获得积分10
32秒前
33秒前
YuenYuen完成签到,获得积分10
33秒前
34秒前
34秒前
xzy发布了新的文献求助10
34秒前
高分求助中
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Ethnicities: Media, Health, and Coping 700
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 600
Development of a new synthetic process for the synthesis of (S)-methadone and (S)- and (R)-isomethadone as NMDA receptor antagonists for the treatment of depression 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3088895
求助须知:如何正确求助?哪些是违规求助? 2741067
关于积分的说明 7563024
捐赠科研通 2391205
什么是DOI,文献DOI怎么找? 1268199
科研通“疑难数据库(出版商)”最低求助积分说明 614019
版权声明 598684