A Multi-Dimension End-to-End CNN Model for Rotating Devices Fault Diagnosis on High-Speed Train Bogie

转向架 维数(图论) 汽车工程 计算机科学 断层(地质) 工程类 车辆动力学 控制工程 电气工程 数学 地质学 地震学 纯数学
作者
Linlin Kou,Yong Qin,Xuejun Zhao,Xin'an Chen
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:69 (3): 2513-2524 被引量:32
标识
DOI:10.1109/tvt.2019.2955221
摘要

With the improvement of sensor techniques, and the urgent requirement of automatic fault diagnosis technologies, the intelligent perception system on high speed train is more popular than ever before. It records the devices’ state information through a sensor network, and services for further analysis. However, Traditional machine learning algorithms are usually constrained by massive multi-sensor data and knowledge-based feature extraction in fault diagnosis. Therefore, this paper extended fault diagnosis methodology into tensor space to deal with multi-sensor monitoring data and take full use of available information. Moreover, the convolutional neural network (CNN) is used for automatic feature learning and classification without human intervention. The effectiveness and efficiency are validated by dataset of rolling element bearings obtained in lab and real-use case. Three features can be highlighted. First of all, the proposed model showed a good adaptability and high efficiency under various working condition by taking full use of the multi-sensor data. It has powerful ability in accuracy and convergence speed. Secondly, it is not as sensitive to data quantity as other deep learning algorithms do. Such superior characteristic made the model more suitable for practical application, because of the insufficient failure data. At last, it is an intelligent End-to-End model, performing automatic fault diagnosis without manual intervention and suitable for real-use case.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Brian发布了新的文献求助10
1秒前
orixero应助chase采纳,获得10
2秒前
123完成签到,获得积分10
2秒前
艾斯完成签到 ,获得积分10
2秒前
4秒前
天天快乐应助陈曦采纳,获得10
4秒前
在水一方应助MEDwhy采纳,获得10
5秒前
科研通AI5应助YJ888采纳,获得10
8秒前
农夫完成签到,获得积分0
8秒前
8秒前
10秒前
wonder123发布了新的文献求助10
15秒前
16秒前
17秒前
Lyn发布了新的文献求助10
18秒前
柴胡完成签到,获得积分10
18秒前
大个应助wonder123采纳,获得10
19秒前
FashionBoy应助lan采纳,获得10
20秒前
善学以致用应助doiwanado采纳,获得10
21秒前
22秒前
22秒前
眼睛大如天完成签到,获得积分10
23秒前
slx发布了新的文献求助100
24秒前
风趣依瑶发布了新的文献求助10
25秒前
PAN完成签到,获得积分20
25秒前
haha发布了新的文献求助10
25秒前
25秒前
科研民工_郭完成签到,获得积分10
27秒前
吕子尚发布了新的文献求助10
28秒前
淡定落雁发布了新的文献求助10
28秒前
cis2014发布了新的文献求助10
28秒前
Mxj0607发布了新的文献求助10
29秒前
30秒前
wudizhuzhu233完成签到,获得积分10
30秒前
赘婿应助123456采纳,获得10
32秒前
32秒前
33秒前
33秒前
33秒前
不一样的烟火完成签到,获得积分10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989589
求助须知:如何正确求助?哪些是违规求助? 3531795
关于积分的说明 11254881
捐赠科研通 3270329
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176