Microbially-derived nitrogen (N) has been considered as one of important contributors to soil organic N, but few studies have quantified the rate of necromass N decomposition. Here, via an in situ incubation of 15N-labeled necromass, we found that 33.1–39.5% of the initial 15N stabilized in the soil as non-living organic N after 803 days of incubation. Bacterial, fungal, and actinobacterial necromass N showed similar decomposition pattern and mean residence time. The decomposition of microbial necromass N was best simulated by a two-pool model where a labile pool decomposed rapidly (0.4 years), and a more recalcitrant pool decomposed at a much slower rate. This finding contrasted with the decomposition of plant litter N, which was better simulated by a single-pool model. The stabilization of necromass N in soils after more than two years suggests the important contribution of microbial residues to soil organic N, which is most likely due to mineral protection from decomposition.