Recognition of feeding behaviour of pigs and determination of feeding time of each pig by a video-based deep learning method

Softmax函数 色调 模式识别(心理学) 人工智能 卷积神经网络 试验装置 分割 色空间 数学 计算机科学 计算机视觉 图像(数学)
作者
Chen Chen,Weixing Zhu,Juan P. Steibel,Janice M. Siegford,Junjie Han,Tomás Norton
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:176: 105642-105642 被引量:67
标识
DOI:10.1016/j.compag.2020.105642
摘要

Monitoring the feeding behaviour of pigs and measuring their feeding time can help farmers to evaluate the pig health and welfare. The aim of this study was to develop a video-based deep learning algorithm to recognise feeding behaviour of nursery pigs and determine the feeding time of pigs on an individual level. In the experiment, two pens of pigs were video recorded for 3 days. In the video of feeding region of pen 1, 96,000 1 s feeding episodes and 96,000 1 s non-feeding episodes were generated. 70% of these data was randomly selected as training set and the remaining 30% as validation set. In the video of feeding region of pen 2, all the labelled 24,656 1 s feeding episodes and 61,744 1 s non-feeding episodes were used as test set. Firstly, the Convolutional Neural Network (CNN) architecture Xception was used to extract spatial features. These features were input into Long Short-term Memory (LSTM) framework to extract spatial-temporal features. Through the fully connected layer, the prediction function Softmax was finally used to classify these 1 s episodes as feeding or non-feeding. An image processing algorithm based on maximum entropy segmentation, HSV (Hue, Saturation and Value) colour space transformation and template matching was proposed to calculate the circularity of the head, the ratio of the head to the feeding sub-region, the accumulated pixels of the head motion, and the distance from the head to the number on pig back in order to determine the identity and feeding time of each pig. In the test set, the proposed algorithm could recognise feeding behaviour with an accuracy of 98.4%, a sensitivity of 98.8%, specificity of 98.3% and precision of 95.9%, and could correctly recognise 98.5% of feeding time of individual pigs from the total 45944 s feeding time of 8 pigs. The results indicate that the proposed method can be used to recognise feeding behavior of pigs and determine feeding time of each pig.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz发布了新的文献求助10
2秒前
2秒前
2秒前
友好妙菱发布了新的文献求助10
2秒前
3秒前
白泽阳发布了新的文献求助10
3秒前
彻鱼关注了科研通微信公众号
4秒前
5秒前
5秒前
小马甲应助Holly采纳,获得10
6秒前
FashionBoy应助龙龙采纳,获得10
6秒前
寒假工发布了新的文献求助10
7秒前
7秒前
wang发布了新的文献求助10
8秒前
8秒前
8秒前
yu发布了新的文献求助10
9秒前
Tsd发布了新的文献求助10
9秒前
Elarrina发布了新的文献求助10
10秒前
www发布了新的文献求助10
12秒前
踏雾完成签到 ,获得积分10
12秒前
12秒前
初0发布了新的文献求助10
13秒前
JamesPei应助Elarrina采纳,获得10
15秒前
15秒前
iNk应助朴实柚子采纳,获得10
16秒前
淘气乌龙茶完成签到 ,获得积分10
16秒前
Liao完成签到,获得积分10
17秒前
不见高山发布了新的文献求助20
17秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
背后中心发布了新的文献求助10
18秒前
19秒前
小蒋同学完成签到,获得积分10
19秒前
俭朴尔白发布了新的文献求助80
19秒前
量子星尘发布了新的文献求助10
20秒前
泛溪发布了新的文献求助10
20秒前
Orange应助倪倪采纳,获得10
21秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770594
求助须知:如何正确求助?哪些是违规求助? 5586008
关于积分的说明 15424556
捐赠科研通 4904087
什么是DOI,文献DOI怎么找? 2638509
邀请新用户注册赠送积分活动 1586384
关于科研通互助平台的介绍 1541462