Recognition of feeding behaviour of pigs and determination of feeding time of each pig by a video-based deep learning method

Softmax函数 色调 模式识别(心理学) 人工智能 卷积神经网络 试验装置 分割 色空间 数学 计算机科学 计算机视觉 图像(数学)
作者
Chen Chen,Weixing Zhu,Juan P. Steibel,Janice M. Siegford,Junjie Han,Tomás Norton
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:176: 105642-105642 被引量:67
标识
DOI:10.1016/j.compag.2020.105642
摘要

Monitoring the feeding behaviour of pigs and measuring their feeding time can help farmers to evaluate the pig health and welfare. The aim of this study was to develop a video-based deep learning algorithm to recognise feeding behaviour of nursery pigs and determine the feeding time of pigs on an individual level. In the experiment, two pens of pigs were video recorded for 3 days. In the video of feeding region of pen 1, 96,000 1 s feeding episodes and 96,000 1 s non-feeding episodes were generated. 70% of these data was randomly selected as training set and the remaining 30% as validation set. In the video of feeding region of pen 2, all the labelled 24,656 1 s feeding episodes and 61,744 1 s non-feeding episodes were used as test set. Firstly, the Convolutional Neural Network (CNN) architecture Xception was used to extract spatial features. These features were input into Long Short-term Memory (LSTM) framework to extract spatial-temporal features. Through the fully connected layer, the prediction function Softmax was finally used to classify these 1 s episodes as feeding or non-feeding. An image processing algorithm based on maximum entropy segmentation, HSV (Hue, Saturation and Value) colour space transformation and template matching was proposed to calculate the circularity of the head, the ratio of the head to the feeding sub-region, the accumulated pixels of the head motion, and the distance from the head to the number on pig back in order to determine the identity and feeding time of each pig. In the test set, the proposed algorithm could recognise feeding behaviour with an accuracy of 98.4%, a sensitivity of 98.8%, specificity of 98.3% and precision of 95.9%, and could correctly recognise 98.5% of feeding time of individual pigs from the total 45944 s feeding time of 8 pigs. The results indicate that the proposed method can be used to recognise feeding behavior of pigs and determine feeding time of each pig.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猫猫爱吃煎饼完成签到 ,获得积分10
刚刚
儒雅白山发布了新的文献求助10
刚刚
刚刚
Hello应助飞飞888采纳,获得10
刚刚
jackeyYuu发布了新的文献求助30
1秒前
欲尘清风完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
together完成签到,获得积分10
2秒前
火星上的冬云完成签到,获得积分10
2秒前
2秒前
LTB发布了新的文献求助10
2秒前
小泰勒横着走完成签到,获得积分10
2秒前
星禾吾应助桃源theshy采纳,获得10
2秒前
自信之卉发布了新的文献求助10
2秒前
Amber发布了新的文献求助10
3秒前
3秒前
田様应助章传杰采纳,获得10
3秒前
罗宏亮完成签到,获得积分10
3秒前
4秒前
4秒前
Jasper应助浪里白条采纳,获得10
5秒前
酷酷从凝发布了新的文献求助10
5秒前
无奈沛白完成签到,获得积分10
5秒前
Criminology34应助圆圆的波仔采纳,获得10
5秒前
ccc关闭了ccc文献求助
5秒前
柯南嘉尔发布了新的文献求助20
6秒前
量子星尘发布了新的文献求助10
6秒前
大模型应助翁嘉艺采纳,获得30
6秒前
果果发布了新的文献求助20
6秒前
7秒前
7秒前
深情安青应助我就是KKKK采纳,获得10
7秒前
8秒前
LTB完成签到,获得积分10
8秒前
天天快乐应助叶长安采纳,获得30
9秒前
量子星尘发布了新的文献求助10
9秒前
CodeCraft应助Boro采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710379
求助须知:如何正确求助?哪些是违规求助? 5199013
关于积分的说明 15260454
捐赠科研通 4863009
什么是DOI,文献DOI怎么找? 2610375
邀请新用户注册赠送积分活动 1560754
关于科研通互助平台的介绍 1518381