Privacy-preserving point-of-interest recommendation based on geographical and social influence

计算机科学 推荐系统 兴趣点 点(几何) 情报检索 熵(时间箭头) 相似性(几何) 数据挖掘 互联网隐私 人工智能 数学 几何学 量子力学 图像(数学) 物理
作者
Yongfeng Huo,Bilian Chen,Jing Tang,Yanjun Zeng
出处
期刊:Information Sciences [Elsevier]
卷期号:543: 202-218 被引量:40
标识
DOI:10.1016/j.ins.2020.07.046
摘要

We investigate a privacy-preserving problem for point-of-interest (POI) recommendation system for rapidly growing location-based social networks (LBSNs). The LBSN-based recommendation algorithms usually consider three factors: user similarity, social influence between friends and geographical influence in. The LBSN-based recommendation system first needs to collect relevant information of users and then provide them with potentially interesting contents. However, sensitive information of users may be leaked when the recommendation is provided. In this article, we focus on preventing user’s privacy from disclosure upon geographical location and friend relationship factors. We propose a geographical location privacy-preserving algorithm (GLP) that achieves 〈r,h〉-privacy and present a friend relationship privacy-preserving algorithm (FRP) through adding Laplacian distributed noise for fusing the user trusts. Subsequently, we integrate the GLP and FRP algorithms into a general recommendation system and build a privacy-preserving recommendation system. The novel system enjoys the privacy guarantee under the metric differential entropy through theoretical analysis. Experimental results demonstrate a good trade-off between privacy and accuracy of the proposed recommendation system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ethan发布了新的文献求助10
1秒前
1秒前
ding应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
韩55应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
cxw发布了新的文献求助10
2秒前
汉堡包应助科研通管家采纳,获得30
2秒前
2秒前
1111应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
1111应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
1111应助科研通管家采纳,获得10
2秒前
侯总应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
充电宝应助小米采纳,获得10
2秒前
李健的粉丝团团长应助wang采纳,获得10
3秒前
怕孤单应助小七采纳,获得10
5秒前
Lliang发布了新的文献求助10
6秒前
读读读完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
9秒前
usdivff完成签到,获得积分10
9秒前
10秒前
李四发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
rafaam发布了新的文献求助10
12秒前
cxw完成签到,获得积分10
12秒前
NexusExplorer应助河神采纳,获得10
12秒前
Mic应助morena采纳,获得10
12秒前
12秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715