Detection of peripherally inserted central catheter (PICC) in chest X-ray images: A multi-task deep learning model

深度学习 分割 外周穿刺中心静脉导管 人工智能 计算机科学 任务(项目管理) 再培训 导管 联营 医学 计算机视觉 放射科 业务 管理 国际贸易 经济
作者
Dingding Yu,Kaijie Zhang,Lingyan Huang,Bonan Zhao,Xiaoshan Zhang,Xin Guo,Miaomiao Li,Zheng Gu,Guosheng Fu,Minchun Hu,Yan Ping,Sheng Ye,Zhenjie Liu,Xianliang Hu,Ruiyi Zhao
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:197: 105674-105674 被引量:27
标识
DOI:10.1016/j.cmpb.2020.105674
摘要

Peripherally inserted central catheter (PICC) is a novel drug delivery mode which has been widely used in clinical practice. However, long-term retention and some improper actions of patients may cause some severe complications of PICC, such as the drift and prolapse of its catheter. Clinically, the postoperative care of PICC is mainly completed by nurses. However, they cannot recognize the correct position of PICC from X-ray chest images as soon as the complications happen, which may lead to improper treatment. Therefore, it is necessary to identify the position of the PICC catheter as soon as these complications occur. Here we proposed a novel multi-task deep learning framework to detect PICC automatically through X-ray images, which could help nurses to solve this problem. We collected 348 X-ray chest images from 326 patients with visible PICC. Then we proposed a multi-task deep learning framework for line segmentation and tip detection of PICC catheters simultaneously. The proposed deep learning model is composed of an extraction structure and three routes, an up-sampling route for segmentation, an RPNs route, and an RoI Pooling route for detection. We further compared the effectiveness of our model with the models previously proposed. In the catheter segmentation task, 300 X-ray images were utilized for training the model, then 48 images were tested. In the tip detection task, 154 X-ray images were used for retraining and 20 images were used in the test. Our model achieved generally better results among several popular deep learning models previously proposed. We proposed a multi-task deep learning model that could segment the catheter and detect the tip of PICC simultaneously from X-ray chest images. This model could help nurses to recognize the correct position of PICC, and therefore, to handle the potential complications properly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢喜秋寒发布了新的文献求助10
刚刚
LRRAM_809应助lay采纳,获得10
1秒前
微笑高山完成签到 ,获得积分10
1秒前
2秒前
思源应助钙钛矿柔性采纳,获得10
2秒前
李金玉发布了新的文献求助10
4秒前
CipherSage应助淡淡菠萝采纳,获得10
5秒前
111完成签到,获得积分10
6秒前
奥利奥完成签到,获得积分20
7秒前
英姑应助伈X采纳,获得10
7秒前
8秒前
慕青应助泡椒采纳,获得10
8秒前
夏立发布了新的文献求助10
8秒前
文艺迎夏应助CHANYEOLYANG采纳,获得10
8秒前
随便关注了科研通微信公众号
10秒前
科研小白白完成签到,获得积分10
11秒前
chen发布了新的文献求助10
14秒前
传奇3应助爱听歌契采纳,获得10
15秒前
15秒前
tumbler完成签到 ,获得积分10
16秒前
19秒前
淡淡菠萝发布了新的文献求助10
21秒前
21秒前
22秒前
生动谷蓝发布了新的文献求助20
23秒前
鱼2333完成签到,获得积分20
24秒前
YXH发布了新的文献求助10
26秒前
lizhongxin发布了新的文献求助10
26秒前
泡椒发布了新的文献求助10
27秒前
万能图书馆应助liuliu采纳,获得10
28秒前
研友_LJQ728发布了新的文献求助20
28秒前
30秒前
xzl完成签到 ,获得积分0
31秒前
今后应助YXH采纳,获得10
31秒前
李健的小迷弟应助lizhongxin采纳,获得10
32秒前
科研通AI2S应助Overlord采纳,获得10
32秒前
songjin完成签到 ,获得积分10
32秒前
wfy发布了新的文献求助10
32秒前
35秒前
加菲丰丰给感动馒头的求助进行了留言
36秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387054
求助须知:如何正确求助?哪些是违规求助? 3000021
关于积分的说明 8788395
捐赠科研通 2685768
什么是DOI,文献DOI怎么找? 1471216
科研通“疑难数据库(出版商)”最低求助积分说明 680182
邀请新用户注册赠送积分活动 672840