默认模式网络
认知
认知心理学
神经功能成像
神经科学
心理学
功能连接
任务正网络
集合(抽象数据类型)
计算机科学
程序设计语言
作者
Richard A. I. Bethlehem,Casey Paquola,Jakob Seidlitz,Lisa Ronan,Boris C. Bernhardt,Cam-CAN Consortium,Kamen A. Tsvetanov
出处
期刊:NeuroImage
[Elsevier]
日期:2020-08-21
卷期号:222: 117299-117299
被引量:170
标识
DOI:10.1016/j.neuroimage.2020.117299
摘要
Ageing is commonly associated with changes to segregation and integration of functional brain networks, but, in isolation, current network-based approaches struggle to elucidate changes across the many axes of functional organisation. However, the advent of gradient mapping techniques in neuroimaging provides a new means of studying functional organisation in a multi-dimensional connectivity space. Here, we studied ageing and behaviourally-relevant differences in a three-dimensional connectivity space using the Cambridge Centre for Ageing Neuroscience cohort (n = 643). Building on gradient mapping techniques, we developed a set of measures to quantify the dispersion within and between functional communities. We detected a strong shift of the visual network across the adult lifespan from an extreme to a more central position in the 3D gradient space. In contrast, the dispersion distance between transmodal communities (dorsal attention, ventral attention, frontoparietal and default mode) did not change. However, these communities themselves were increasingly dispersed with increasing age, reflecting more dissimilar functional connectivity profiles within each community. Increasing dispersion of frontoparietal, attention and default mode networks, in particular, were associated negatively with cognition, measured by fluid intelligence. By using a technique that explicitly captures the ordering of functional systems in a multi-dimensional hierarchical framework, we identified behaviorally-relevant age-related differences of within and between network organisation. We propose that the study of functional gradients across the adult lifespan could provide insights that may facilitate the development of new strategies to maintain cognitive ability across the lifespan in health and disease.
科研通智能强力驱动
Strongly Powered by AbleSci AI