低临界溶液温度
材料科学
自愈水凝胶
膜
共单体
单体
高分子化学
点击化学
差示扫描量热法
化学工程
玻璃化转变
色谱中的热响应聚合物
聚合物
共聚物
复合材料
有机化学
化学
相(物质)
热力学
物理
工程类
生物化学
反相色谱法
作者
Binoy Maiti,Alex Abramov,Lourdes Franco,Jordi Puiggalı́,Hamidreza Enshaei,Carlos Alemán,David Díaz Díaz
标识
DOI:10.1002/adfm.202001683
摘要
Abstract This article describes the design and synthesis of a new series of hydrogel membranes composed of trialkyne derivatives of glycerol ethoxylate and bisphenol A diazide (BA‐diazide) or diazide‐terminated PEG600 monomer via a Cu(I)‐catalyzed photoclick reaction. The water‐swollen hydrogel membranes display thermoresponsive actuation and their lower critical solution temperature (LCST) values are determined by differential scanning calorimetry. Glycerol ethoxylate moiety serves as the thermoresponsive component and hydrophilic part, while the azide‐based component acts as the hydrophobic comonomer and most likely provides a critical hydrophobic/hydrophilic balance contributing also to the significant mechanical strength of the membranes. These hydrogels exhibit a reversible shape‐memory effect in response to temperature through a defined phase transition. The swelling and deswelling behavior of the membranes are systematically examined. Due to the click nature of the reaction, easy availability of azide and alkyne functional‐monomers, and the polymer architecture, the glass transition temperature ( T g ) is easily controlled through monomer design and crosslink density by varying the feed ratio of different monomers. The mechanical properties of the membranes are studied by universal tensile testing measurements. Moreover, the hydrogels show the ability to absorb a dye and release it in a controlled manner by applying heat below and above the LCST.
科研通智能强力驱动
Strongly Powered by AbleSci AI