Review of Bridge Structural Health Monitoring Aided by Big Data and Artificial Intelligence: From Condition Assessment to Damage Detection

结构健康监测 桥(图论) 计算机科学 管道(软件) 范围(计算机科学) 领域(数学) 钥匙(锁) 人工智能 数据科学 工程类 计算机安全 医学 结构工程 内科学 数学 纯数学 程序设计语言
作者
Limin Sun,Zhiqiang Shang,Ye Xia,Sutanu Bhowmick,Satish Nagarajaiah
出处
期刊:Journal of Structural Engineering-asce [American Society of Civil Engineers]
卷期号:146 (5) 被引量:532
标识
DOI:10.1061/(asce)st.1943-541x.0002535
摘要

Structural health monitoring (SHM) techniques have been widely used in long-span bridges. However, due to limitations of computational ability and data analysis methods, the knowledge in massive SHM data is not well interpreted. Big data (BD) and artificial intelligence (AI) techniques are seen as promising ways to address the data interpretation problem. This paper aims to clarify the scope of BD and AI techniques on what and how regarding bridge SHM. The BD and AI techniques are summarized, and the requirements of bridge SHM for new techniques are generalized. Applications of BD and AI techniques in bridge SHM are reviewed, respectively. BD techniques can be divided into two categories, namely computing techniques and data analysis methods. The computing techniques are employed in SHM to build a BD-oriented SHM framework and to address computing problems, while the data analysis methods are introduced under a pipeline of BD analysis, application scenarios of BD techniques in bridge SHM are proposed in each step of this pipeline. The state of the art of deep learning in SHM is introduced to represent AI applications, which are concerned with processing unstructured data for visual inspection and time series for structural damage detection. Finally, the upper limit, challenges, and future trends are discussed. As a review, the paper offers meaningful perspectives and suggestions for employing BD and AI techniques in the field of bridge SHM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙西西完成签到,获得积分10
1秒前
Hello应助我最爱读文献了采纳,获得10
2秒前
yxt发布了新的文献求助10
2秒前
浮游应助何以载道采纳,获得10
3秒前
FG完成签到,获得积分10
3秒前
KYY完成签到 ,获得积分10
4秒前
5秒前
肉苁蓉完成签到 ,获得积分20
5秒前
fu发布了新的文献求助30
5秒前
FG发布了新的文献求助10
6秒前
6秒前
飞舞的青鱼完成签到,获得积分10
6秒前
6秒前
7秒前
科研通AI5应助杨丽采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
彭于晏应助蓝眼睛采纳,获得10
8秒前
9秒前
文静的夜阑完成签到,获得积分20
9秒前
炼丹师应助啊哦采纳,获得20
10秒前
森水垚发布了新的文献求助10
10秒前
jihe发布了新的文献求助10
11秒前
12秒前
感动的海豚完成签到,获得积分10
13秒前
木子贝贝发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
14秒前
15秒前
英俊的铭应助机灵小海豚采纳,获得10
15秒前
SciGPT应助Sir.夏季风采纳,获得10
15秒前
YYANG完成签到,获得积分10
16秒前
王子怡给王子怡的求助进行了留言
17秒前
17秒前
顾矜应助amber采纳,获得10
17秒前
WRWRWR发布了新的文献求助10
18秒前
18秒前
顺利一江发布了新的文献求助10
18秒前
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132616
求助须知:如何正确求助?哪些是违规求助? 4333988
关于积分的说明 13502721
捐赠科研通 4171020
什么是DOI,文献DOI怎么找? 2286820
邀请新用户注册赠送积分活动 1287691
关于科研通互助平台的介绍 1228590