Review of Bridge Structural Health Monitoring Aided by Big Data and Artificial Intelligence: From Condition Assessment to Damage Detection

结构健康监测 桥(图论) 计算机科学 管道(软件) 范围(计算机科学) 领域(数学) 钥匙(锁) 人工智能 数据科学 工程类 计算机安全 医学 结构工程 内科学 数学 纯数学 程序设计语言
作者
Limin Sun,Zhiqiang Shang,Ye Xia,Sutanu Bhowmick,Satish Nagarajaiah
出处
期刊:Journal of Structural Engineering-asce [American Society of Civil Engineers]
卷期号:146 (5) 被引量:641
标识
DOI:10.1061/(asce)st.1943-541x.0002535
摘要

Structural health monitoring (SHM) techniques have been widely used in long-span bridges. However, due to limitations of computational ability and data analysis methods, the knowledge in massive SHM data is not well interpreted. Big data (BD) and artificial intelligence (AI) techniques are seen as promising ways to address the data interpretation problem. This paper aims to clarify the scope of BD and AI techniques on what and how regarding bridge SHM. The BD and AI techniques are summarized, and the requirements of bridge SHM for new techniques are generalized. Applications of BD and AI techniques in bridge SHM are reviewed, respectively. BD techniques can be divided into two categories, namely computing techniques and data analysis methods. The computing techniques are employed in SHM to build a BD-oriented SHM framework and to address computing problems, while the data analysis methods are introduced under a pipeline of BD analysis, application scenarios of BD techniques in bridge SHM are proposed in each step of this pipeline. The state of the art of deep learning in SHM is introduced to represent AI applications, which are concerned with processing unstructured data for visual inspection and time series for structural damage detection. Finally, the upper limit, challenges, and future trends are discussed. As a review, the paper offers meaningful perspectives and suggestions for employing BD and AI techniques in the field of bridge SHM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cynthia发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
宣千易发布了新的文献求助10
2秒前
柔弱的便当完成签到,获得积分10
2秒前
年轻的问兰完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
彭于晏应助Jasmine采纳,获得10
3秒前
3秒前
Orange应助little_forest采纳,获得10
4秒前
小火孩发布了新的文献求助10
4秒前
大个应助顺利的奇异果采纳,获得10
4秒前
酷波er应助herdwind采纳,获得10
5秒前
5秒前
Lucas应助维洛尼亚采纳,获得10
5秒前
无极微光应助HEANZ采纳,获得20
5秒前
liao应助美好斓采纳,获得10
6秒前
单薄不惜完成签到,获得积分10
6秒前
汐风完成签到,获得积分10
6秒前
6秒前
7秒前
隐形曼青应助acuter采纳,获得30
7秒前
7秒前
kakoi完成签到,获得积分20
7秒前
小唐完成签到,获得积分20
7秒前
大模型应助Goyounjung采纳,获得10
7秒前
wanci应助小太阳采纳,获得10
8秒前
coolplex发布了新的文献求助10
8秒前
8秒前
8秒前
凌发发布了新的文献求助10
8秒前
土豪的严青完成签到,获得积分10
9秒前
犹豫的棒棒糖完成签到,获得积分10
9秒前
SciGPT应助招财进宝宝采纳,获得10
9秒前
10秒前
10秒前
学术混子完成签到,获得积分10
10秒前
10秒前
大模型应助ggg采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210