Review of Bridge Structural Health Monitoring Aided by Big Data and Artificial Intelligence: From Condition Assessment to Damage Detection

结构健康监测 桥(图论) 计算机科学 管道(软件) 范围(计算机科学) 领域(数学) 钥匙(锁) 人工智能 数据科学 工程类 计算机安全 医学 结构工程 内科学 数学 纯数学 程序设计语言
作者
Limin Sun,Zhiqiang Shang,Ye Xia,Sutanu Bhowmick,Satish Nagarajaiah
出处
期刊:Journal of Structural Engineering-asce [American Society of Civil Engineers]
卷期号:146 (5) 被引量:532
标识
DOI:10.1061/(asce)st.1943-541x.0002535
摘要

Structural health monitoring (SHM) techniques have been widely used in long-span bridges. However, due to limitations of computational ability and data analysis methods, the knowledge in massive SHM data is not well interpreted. Big data (BD) and artificial intelligence (AI) techniques are seen as promising ways to address the data interpretation problem. This paper aims to clarify the scope of BD and AI techniques on what and how regarding bridge SHM. The BD and AI techniques are summarized, and the requirements of bridge SHM for new techniques are generalized. Applications of BD and AI techniques in bridge SHM are reviewed, respectively. BD techniques can be divided into two categories, namely computing techniques and data analysis methods. The computing techniques are employed in SHM to build a BD-oriented SHM framework and to address computing problems, while the data analysis methods are introduced under a pipeline of BD analysis, application scenarios of BD techniques in bridge SHM are proposed in each step of this pipeline. The state of the art of deep learning in SHM is introduced to represent AI applications, which are concerned with processing unstructured data for visual inspection and time series for structural damage detection. Finally, the upper limit, challenges, and future trends are discussed. As a review, the paper offers meaningful perspectives and suggestions for employing BD and AI techniques in the field of bridge SHM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
空2完成签到 ,获得积分0
刚刚
Hin66发布了新的文献求助10
1秒前
2秒前
2秒前
ding应助勤恳的夏之采纳,获得10
3秒前
4秒前
5秒前
可爱的函函应助笑嘻嘻采纳,获得10
6秒前
dolphin完成签到,获得积分10
7秒前
7秒前
7秒前
赵怡宁发布了新的文献求助10
8秒前
8秒前
8秒前
桐桐应助油个大饼呜呜呜采纳,获得10
8秒前
上官若男应助天子笑采纳,获得30
9秒前
10秒前
11秒前
乐乐乐发布了新的文献求助10
12秒前
Re完成签到,获得积分20
12秒前
两滴水的云完成签到,获得积分10
12秒前
yiyiluo发布了新的文献求助10
13秒前
领导范儿应助坚强的紫菜采纳,获得10
14秒前
旺仔Mario发布了新的文献求助10
14秒前
wzy完成签到 ,获得积分10
15秒前
xmx发布了新的文献求助10
15秒前
123关闭了123文献求助
16秒前
16秒前
17秒前
香蕉静芙发布了新的文献求助20
17秒前
17秒前
梦想发布了新的文献求助20
18秒前
19秒前
汉堡包应助Tethys采纳,获得10
19秒前
彩色的奄发布了新的文献求助10
21秒前
cabbage关注了科研通微信公众号
22秒前
wbh发布了新的文献求助10
22秒前
keep完成签到 ,获得积分10
22秒前
笑嘻嘻发布了新的文献求助10
22秒前
善学以致用应助ff采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988827
求助须知:如何正确求助?哪些是违规求助? 3531197
关于积分的说明 11252739
捐赠科研通 3269830
什么是DOI,文献DOI怎么找? 1804815
邀请新用户注册赠送积分活动 881915
科研通“疑难数据库(出版商)”最低求助积分说明 809028