Photovoltaic panel cooling by atmospheric water sorption–evaporation cycle

光伏系统 环境科学 光伏 光电-热混合太阳能集热器 材料科学 气象学 太阳能 环境工程 工程类 电气工程 物理
作者
Renyuan Li,Yusuf Shi,Mengchun Wu,Seung‐Hyun Hong,Peng Wang
出处
期刊:Nature sustainability [Springer Nature]
卷期号:3 (8): 636-643 被引量:198
标识
DOI:10.1038/s41893-020-0535-4
摘要

More than 600 GW of photovoltaic panels are currently installed worldwide, with the predicted total capacity increasing very rapidly every year. One essential issue in photovoltaic conversion is the massive heat generation of photovoltaic panels under sunlight, which represents 75–96% of the total absorbed solar energy and thus greatly increases the temperature and decreases the energy efficiency and lifetime of photovoltaic panels. In this report we demonstrate a new and versatile photovoltaic panel cooling strategy that employs a sorption-based atmospheric water harvester as an effective cooling component. The atmospheric water harvester photovoltaic cooling system provides an average cooling power of 295 W m–2 and lowers the temperature of a photovoltaic panel by at least 10 °C under 1.0 kW m–2 solar irradiation in laboratory conditions. It delivered a 13–19% increase in electricity generation in a commercial photovoltaic panel in outdoor field tests conducted in the winter and summer in Saudi Arabia. The atmospheric water harvester based photovoltaic panel cooling strategy has little geographical constraint in terms of its application and has the potential to improve the electricity production of existing and future photovoltaic plants, which can be directly translated into less CO2 emission or less land occupation by photovoltaic panels. As solar power is taking centre stage in the global fight against climate change, atmospheric water harvester based cooling represents an important step toward sustainability. Photovoltaic panel conversion generates heat that reduces the energy efficiency and lifetime of the panel. A photovoltaic panel cooling strategy by a sorption-based atmospheric water harvester is shown to improve the productivity of electricity generation with important sustainability advantages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gigi完成签到,获得积分20
刚刚
小马甲应助Nero采纳,获得10
刚刚
毓雅发布了新的文献求助10
刚刚
atropine完成签到 ,获得积分10
3秒前
lin应助科研通管家采纳,获得10
3秒前
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
竹筏过海应助科研通管家采纳,获得30
4秒前
4秒前
lin应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
5秒前
英姑应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
科研小白完成签到,获得积分10
6秒前
zzer完成签到,获得积分10
7秒前
桐桐应助天天看文献采纳,获得10
8秒前
自然八宝粥完成签到,获得积分10
8秒前
闪闪落雁发布了新的文献求助10
8秒前
111完成签到,获得积分10
8秒前
momo应助小一采纳,获得10
10秒前
你的名字完成签到,获得积分20
10秒前
10秒前
星辰大海应助龚俊采纳,获得10
10秒前
小明发布了新的文献求助10
11秒前
李子完成签到,获得积分10
11秒前
12秒前
13秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082120
求助须知:如何正确求助?哪些是违规求助? 2735209
关于积分的说明 7536620
捐赠科研通 2384906
什么是DOI,文献DOI怎么找? 1264519
科研通“疑难数据库(出版商)”最低求助积分说明 612673
版权声明 597623