Photovoltaic panel cooling by atmospheric water sorption–evaporation cycle

光伏系统 环境科学 光伏 光电-热混合太阳能集热器 材料科学 气象学 太阳能 环境工程 工程类 电气工程 物理
作者
Renyuan Li,Yusuf Shi,Mengchun Wu,Seung‐Hyun Hong,Peng Wang
出处
期刊:Nature sustainability [Springer Nature]
卷期号:3 (8): 636-643 被引量:205
标识
DOI:10.1038/s41893-020-0535-4
摘要

More than 600 GW of photovoltaic panels are currently installed worldwide, with the predicted total capacity increasing very rapidly every year. One essential issue in photovoltaic conversion is the massive heat generation of photovoltaic panels under sunlight, which represents 75–96% of the total absorbed solar energy and thus greatly increases the temperature and decreases the energy efficiency and lifetime of photovoltaic panels. In this report we demonstrate a new and versatile photovoltaic panel cooling strategy that employs a sorption-based atmospheric water harvester as an effective cooling component. The atmospheric water harvester photovoltaic cooling system provides an average cooling power of 295 W m–2 and lowers the temperature of a photovoltaic panel by at least 10 °C under 1.0 kW m–2 solar irradiation in laboratory conditions. It delivered a 13–19% increase in electricity generation in a commercial photovoltaic panel in outdoor field tests conducted in the winter and summer in Saudi Arabia. The atmospheric water harvester based photovoltaic panel cooling strategy has little geographical constraint in terms of its application and has the potential to improve the electricity production of existing and future photovoltaic plants, which can be directly translated into less CO2 emission or less land occupation by photovoltaic panels. As solar power is taking centre stage in the global fight against climate change, atmospheric water harvester based cooling represents an important step toward sustainability. Photovoltaic panel conversion generates heat that reduces the energy efficiency and lifetime of the panel. A photovoltaic panel cooling strategy by a sorption-based atmospheric water harvester is shown to improve the productivity of electricity generation with important sustainability advantages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuooo发布了新的文献求助10
刚刚
1秒前
科研通AI2S应助xzy998采纳,获得10
1秒前
Alice发布了新的文献求助10
1秒前
RA发布了新的文献求助10
3秒前
爆米花应助lan采纳,获得10
3秒前
4秒前
4秒前
5秒前
小胖发布了新的文献求助10
5秒前
耍酷的白山完成签到,获得积分10
6秒前
李爱国应助称心曼安采纳,获得10
6秒前
6秒前
勤劳的小蜜蜂完成签到,获得积分10
7秒前
苗条梦玉发布了新的文献求助10
8秒前
cyd发布了新的文献求助10
9秒前
小趴蔡发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
DLDL发布了新的文献求助10
11秒前
共享精神应助liuliu采纳,获得10
12秒前
TSL完成签到,获得积分10
12秒前
14秒前
悦耳的小丸子完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
废寝忘食完成签到,获得积分10
16秒前
令莞发布了新的文献求助10
16秒前
jiejie发布了新的文献求助20
17秒前
17秒前
17秒前
17秒前
执城发布了新的文献求助10
18秒前
小m完成签到,获得积分10
18秒前
18秒前
悦风完成签到,获得积分10
18秒前
隐形问萍完成签到,获得积分10
19秒前
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145789
求助须知:如何正确求助?哪些是违规求助? 2797251
关于积分的说明 7823240
捐赠科研通 2453560
什么是DOI,文献DOI怎么找? 1305699
科研通“疑难数据库(出版商)”最低求助积分说明 627543
版权声明 601484