Single-atom nanozymes: A rising star for biosensing and biomedicine

生物医学 纳米技术 生物传感器 机制(生物学) 化学 催化作用 生化工程 组合化学 材料科学 工程类 生物信息学 生物化学 生物 认识论 哲学
作者
Xianlong Zhang,Guoliang Li,Guang Chen,Di Wu,Xuxia Zhou,Yongning Wu
出处
期刊:Coordination Chemistry Reviews [Elsevier]
卷期号:418: 213376-213376 被引量:160
标识
DOI:10.1016/j.ccr.2020.213376
摘要

Nanozymes with excellent and intrinsic enzyme-mimicking characteristics have been considered as extremely promising alternatives to natural enzymes due to their merits of low cost, easy storage, tunable catalytic activities, high stability, and easy large-scale production. Enormous efforts have been devoted to the development of highly efficient nanozymes and the promising applications of nanozymes. Recently, single-atom nanozymes (SAzymes) emerge as a novel high performance nanozyme and have attracted extensive study interests. Moreover, SAzymes with homogeneously dispersed active sites and well-defined coordination structures offer rare opportunities to explore their structure–activity relationship and regulate the geometric and electronic properties of catalytic active sites. By now, SAzymes have made impressive progresses in their design synthesis, mechanism study, and advanced applications. In this review, we comprehensively summarize the latest research advances on the design construction, catalytic mechanism, biosensing and biomedicine applications of SAzymes. First of all, the synthesis strategies (including wet-chemical synthesis, metal organic frameworks (MOFs)-derived strategy, and atom trapping strategy, etc.), active centers, and catalytic mechanism of SAzymes are considerately summarized. Then, the attentions are concentrated on their advanced applications, including biosensing and biomedicine applications (i.e., cancer therapy, antibacterial, cytoprotection, wound healing, and sepsis treatment). At the end of the article, the challenges and opportunities on the further studies of SAzymes (including design, synthesis, and surface modification, selectivity, catalytic activity, diversities, catalytic mechanism, and promising applications) are tentatively proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助椿上春树采纳,获得10
刚刚
李欣华完成签到,获得积分20
1秒前
spring完成签到,获得积分10
1秒前
华仔应助freebird采纳,获得30
2秒前
2秒前
科目三应助飞奔的小田采纳,获得10
2秒前
2秒前
sivan完成签到,获得积分10
3秒前
3秒前
炙热巧曼完成签到 ,获得积分10
3秒前
4秒前
4秒前
暴富完成签到,获得积分10
6秒前
上官若男应助王粒采纳,获得10
6秒前
7秒前
8秒前
8秒前
Pwrry发布了新的文献求助10
9秒前
10秒前
深情安青应助Air采纳,获得10
10秒前
xiaou完成签到,获得积分10
10秒前
乐乐应助研友_5Zl9D8采纳,获得10
10秒前
在水一方应助Teresa采纳,获得10
11秒前
11秒前
11秒前
猫多鱼发布了新的文献求助200
12秒前
啷哩个尔浪完成签到,获得积分10
12秒前
13秒前
jiangmj1990发布了新的文献求助10
14秒前
14秒前
hoibuoifv发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
FashionBoy应助hhhhhhh采纳,获得10
15秒前
自然的听南完成签到,获得积分10
16秒前
16秒前
WendyWen发布了新的文献求助30
18秒前
或无情发布了新的文献求助10
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563901
求助须知:如何正确求助?哪些是违规求助? 3137137
关于积分的说明 9421201
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559912
邀请新用户注册赠送积分活动 729212
科研通“疑难数据库(出版商)”最低求助积分说明 717197