Multi-class financial distress prediction based on support vector machines integrated with the decomposition and fusion methods

支持向量机 人工智能 计算机科学 财务困境 机器学习 多类分类 苦恼 财务 数据挖掘 业务 医学 金融体系 临床心理学
作者
Jie Sun,Hamido Fujita,Yujiao Zheng,Wenguo Ai
出处
期刊:Information Sciences [Elsevier BV]
卷期号:559: 153-170 被引量:102
标识
DOI:10.1016/j.ins.2021.01.059
摘要

Abstract Binary financial distress prediction (FDP), which categorizes corporate financial status into the two classes of distress and nondistress, cannot provide enough support for effective financial risk management. This paper focuses on research on multiclass FDP based on the support vector machine (SVM) integrated with the decomposition and fusion methods. Corporate financial status is subdivided into four states: financial soundness, financial pseudosoundness, moderate financial distress and serious financial distress. Three multiclass FDP models are built by integrating the SVM with three decomposition and fusion methods, i.e., one-versus-one (OVO), one-versus-rest (OVR), and error-correcting output coding (ECOC), and they are, respectively called OVO-SVM, OVR-SVM and ECOC-SVM. Empirical research based on data from Chinese listed companies shows that OVO-SVM overall outperforms OVR-SVM and ECOC-SVM and is preferred for multiclass FDP. In addition, all three models trained on the original highly class-imbalanced training dataset cannot obtain satisfying performance, and the data level preprocessing mechanisms that make class distributions balanced in the training dataset can greatly improve their multiclass FDP performance. Compared with multivariate discriminant analysis (MDA) and multinomial logit (MNLogit), OVO-SVM has significantly higher accuracy for financial pseudosoundness and moderate financial distress and lower accuracy for financial soundness and serious financial distress, resulting in no significant difference among their overall multiclass FDP performance. However, OVO-SVM is still more competitive than MDA and MNLogit in that financial pseudosoundness and moderate financial distress are much more difficult to predict by human expertise than the other two financial states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猫的毛完成签到 ,获得积分10
1秒前
nicky完成签到 ,获得积分10
2秒前
麦子完成签到 ,获得积分10
3秒前
3秒前
Wilson完成签到 ,获得积分10
4秒前
luckweb发布了新的文献求助10
4秒前
4秒前
8秒前
11秒前
传奇3应助wujiwuhui采纳,获得10
13秒前
开心寄松完成签到,获得积分10
15秒前
北宫完成签到 ,获得积分10
15秒前
wansida完成签到,获得积分10
19秒前
QXS完成签到 ,获得积分10
19秒前
20秒前
菠萝完成签到 ,获得积分10
20秒前
领导范儿应助Villanellel采纳,获得10
24秒前
wintersss完成签到,获得积分10
24秒前
尹尹发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
27秒前
zzzzzz完成签到 ,获得积分10
31秒前
坦率的枕头完成签到,获得积分10
31秒前
XS_QI完成签到 ,获得积分10
31秒前
与共发布了新的文献求助10
34秒前
苑阿宇完成签到 ,获得积分10
34秒前
yck1027完成签到,获得积分10
35秒前
fatcat完成签到,获得积分10
35秒前
斯文败类应助Camus采纳,获得10
36秒前
38秒前
Tammy完成签到 ,获得积分10
38秒前
Herisland完成签到 ,获得积分10
40秒前
lulalula完成签到,获得积分10
41秒前
NEO完成签到 ,获得积分10
43秒前
zcydbttj2011完成签到 ,获得积分10
45秒前
温暖的小鸭子完成签到,获得积分10
47秒前
51秒前
王泽厚发布了新的文献求助20
52秒前
雪花发布了新的文献求助10
54秒前
周全完成签到 ,获得积分10
58秒前
water应助科研通管家采纳,获得10
59秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022