Multi-class financial distress prediction based on support vector machines integrated with the decomposition and fusion methods

支持向量机 人工智能 计算机科学 财务困境 机器学习 多类分类 苦恼 财务 数据挖掘 业务 医学 金融体系 临床心理学
作者
Jie Sun,Hamido Fujita,Yujiao Zheng,Wenguo Ai
出处
期刊:Information Sciences [Elsevier BV]
卷期号:559: 153-170 被引量:102
标识
DOI:10.1016/j.ins.2021.01.059
摘要

Abstract Binary financial distress prediction (FDP), which categorizes corporate financial status into the two classes of distress and nondistress, cannot provide enough support for effective financial risk management. This paper focuses on research on multiclass FDP based on the support vector machine (SVM) integrated with the decomposition and fusion methods. Corporate financial status is subdivided into four states: financial soundness, financial pseudosoundness, moderate financial distress and serious financial distress. Three multiclass FDP models are built by integrating the SVM with three decomposition and fusion methods, i.e., one-versus-one (OVO), one-versus-rest (OVR), and error-correcting output coding (ECOC), and they are, respectively called OVO-SVM, OVR-SVM and ECOC-SVM. Empirical research based on data from Chinese listed companies shows that OVO-SVM overall outperforms OVR-SVM and ECOC-SVM and is preferred for multiclass FDP. In addition, all three models trained on the original highly class-imbalanced training dataset cannot obtain satisfying performance, and the data level preprocessing mechanisms that make class distributions balanced in the training dataset can greatly improve their multiclass FDP performance. Compared with multivariate discriminant analysis (MDA) and multinomial logit (MNLogit), OVO-SVM has significantly higher accuracy for financial pseudosoundness and moderate financial distress and lower accuracy for financial soundness and serious financial distress, resulting in no significant difference among their overall multiclass FDP performance. However, OVO-SVM is still more competitive than MDA and MNLogit in that financial pseudosoundness and moderate financial distress are much more difficult to predict by human expertise than the other two financial states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香锅不要辣完成签到 ,获得积分10
刚刚
奋斗的妙海完成签到 ,获得积分0
3秒前
zxt完成签到,获得积分10
8秒前
酷波er应助Gavin采纳,获得10
9秒前
养猪大户完成签到 ,获得积分10
9秒前
marvelou完成签到,获得积分10
14秒前
Yi羿完成签到 ,获得积分10
19秒前
Sindy完成签到,获得积分10
19秒前
研友Bn完成签到 ,获得积分10
20秒前
要开心完成签到 ,获得积分10
23秒前
Fanfan完成签到 ,获得积分10
23秒前
adazbq完成签到 ,获得积分0
24秒前
Cell完成签到 ,获得积分10
31秒前
烟花应助Gavin采纳,获得10
33秒前
亚高山暗针叶林完成签到 ,获得积分10
33秒前
jj完成签到,获得积分10
35秒前
SDS完成签到 ,获得积分10
43秒前
小蘑菇应助博修采纳,获得10
47秒前
wwdd完成签到,获得积分10
52秒前
丘比特应助Gavin采纳,获得10
1分钟前
1分钟前
1分钟前
火星上小土豆完成签到 ,获得积分10
1分钟前
Gavin发布了新的文献求助10
1分钟前
水水水水发布了新的文献求助30
1分钟前
哎呀呀完成签到,获得积分10
1分钟前
飞0802完成签到,获得积分10
1分钟前
1分钟前
Gavin发布了新的文献求助10
1分钟前
博修发布了新的文献求助10
1分钟前
benyu完成签到,获得积分10
1分钟前
犹豫代曼完成签到,获得积分10
1分钟前
所所应助博修采纳,获得10
1分钟前
曹文鹏完成签到 ,获得积分10
1分钟前
1分钟前
明天过后完成签到,获得积分10
1分钟前
风清扬应助精明晓刚采纳,获得10
1分钟前
Gavin发布了新的文献求助10
1分钟前
1分钟前
Gavin发布了新的文献求助10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990942
求助须知:如何正确求助?哪些是违规求助? 3532247
关于积分的说明 11256731
捐赠科研通 3271164
什么是DOI,文献DOI怎么找? 1805331
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809236