亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-class financial distress prediction based on support vector machines integrated with the decomposition and fusion methods

支持向量机 人工智能 计算机科学 财务困境 机器学习 多类分类 苦恼 财务 数据挖掘 业务 医学 金融体系 临床心理学
作者
Jie Sun,Hamido Fujita,Yujiao Zheng,Wenguo Ai
出处
期刊:Information Sciences [Elsevier BV]
卷期号:559: 153-170 被引量:102
标识
DOI:10.1016/j.ins.2021.01.059
摘要

Abstract Binary financial distress prediction (FDP), which categorizes corporate financial status into the two classes of distress and nondistress, cannot provide enough support for effective financial risk management. This paper focuses on research on multiclass FDP based on the support vector machine (SVM) integrated with the decomposition and fusion methods. Corporate financial status is subdivided into four states: financial soundness, financial pseudosoundness, moderate financial distress and serious financial distress. Three multiclass FDP models are built by integrating the SVM with three decomposition and fusion methods, i.e., one-versus-one (OVO), one-versus-rest (OVR), and error-correcting output coding (ECOC), and they are, respectively called OVO-SVM, OVR-SVM and ECOC-SVM. Empirical research based on data from Chinese listed companies shows that OVO-SVM overall outperforms OVR-SVM and ECOC-SVM and is preferred for multiclass FDP. In addition, all three models trained on the original highly class-imbalanced training dataset cannot obtain satisfying performance, and the data level preprocessing mechanisms that make class distributions balanced in the training dataset can greatly improve their multiclass FDP performance. Compared with multivariate discriminant analysis (MDA) and multinomial logit (MNLogit), OVO-SVM has significantly higher accuracy for financial pseudosoundness and moderate financial distress and lower accuracy for financial soundness and serious financial distress, resulting in no significant difference among their overall multiclass FDP performance. However, OVO-SVM is still more competitive than MDA and MNLogit in that financial pseudosoundness and moderate financial distress are much more difficult to predict by human expertise than the other two financial states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助科研通管家采纳,获得10
2秒前
MchemG应助科研通管家采纳,获得100
2秒前
大模型应助科研通管家采纳,获得10
2秒前
李健的小迷弟应助xiongdi521采纳,获得10
3秒前
4秒前
闫雪发布了新的文献求助10
8秒前
14秒前
橙子味的邱憨憨完成签到 ,获得积分10
17秒前
xiongdi521发布了新的文献求助10
19秒前
隐形曼青应助闫雪采纳,获得10
26秒前
激动的似狮完成签到,获得积分10
30秒前
38秒前
41秒前
Xw发布了新的文献求助10
42秒前
Plum22发布了新的文献求助10
1分钟前
1分钟前
啊哦额发布了新的文献求助10
1分钟前
1分钟前
qq发布了新的文献求助10
1分钟前
Akitten完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
GingerF应助科研通管家采纳,获得10
2分钟前
GingerF应助科研通管家采纳,获得20
2分钟前
GingerF应助科研通管家采纳,获得10
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得30
2分钟前
大胆梦容关注了科研通微信公众号
2分钟前
Xw关闭了Xw文献求助
2分钟前
Plum22驳回了Lucas应助
2分钟前
李健的粉丝团团长应助kohu采纳,获得10
2分钟前
qq完成签到,获得积分10
3分钟前
思源应助Akitten采纳,获得30
3分钟前
3分钟前
3分钟前
童大大发布了新的文献求助10
3分钟前
淡漠发布了新的文献求助10
3分钟前
廖庭毅完成签到,获得积分20
3分钟前
汉堡包应助wen采纳,获得10
3分钟前
秋天完成签到,获得积分10
3分钟前
汉堡包应助科研通管家采纳,获得10
4分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990105
求助须知:如何正确求助?哪些是违规求助? 3532119
关于积分的说明 11256456
捐赠科研通 3271016
什么是DOI,文献DOI怎么找? 1805171
邀请新用户注册赠送积分活动 882288
科研通“疑难数据库(出版商)”最低求助积分说明 809228