Multi-class financial distress prediction based on support vector machines integrated with the decomposition and fusion methods

支持向量机 人工智能 计算机科学 财务困境 机器学习 多类分类 苦恼 财务 数据挖掘 业务 医学 金融体系 临床心理学
作者
Jie Sun,Hamido Fujita,Yujiao Zheng,Wenguo Ai
出处
期刊:Information Sciences [Elsevier]
卷期号:559: 153-170 被引量:102
标识
DOI:10.1016/j.ins.2021.01.059
摘要

Abstract Binary financial distress prediction (FDP), which categorizes corporate financial status into the two classes of distress and nondistress, cannot provide enough support for effective financial risk management. This paper focuses on research on multiclass FDP based on the support vector machine (SVM) integrated with the decomposition and fusion methods. Corporate financial status is subdivided into four states: financial soundness, financial pseudosoundness, moderate financial distress and serious financial distress. Three multiclass FDP models are built by integrating the SVM with three decomposition and fusion methods, i.e., one-versus-one (OVO), one-versus-rest (OVR), and error-correcting output coding (ECOC), and they are, respectively called OVO-SVM, OVR-SVM and ECOC-SVM. Empirical research based on data from Chinese listed companies shows that OVO-SVM overall outperforms OVR-SVM and ECOC-SVM and is preferred for multiclass FDP. In addition, all three models trained on the original highly class-imbalanced training dataset cannot obtain satisfying performance, and the data level preprocessing mechanisms that make class distributions balanced in the training dataset can greatly improve their multiclass FDP performance. Compared with multivariate discriminant analysis (MDA) and multinomial logit (MNLogit), OVO-SVM has significantly higher accuracy for financial pseudosoundness and moderate financial distress and lower accuracy for financial soundness and serious financial distress, resulting in no significant difference among their overall multiclass FDP performance. However, OVO-SVM is still more competitive than MDA and MNLogit in that financial pseudosoundness and moderate financial distress are much more difficult to predict by human expertise than the other two financial states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
4秒前
鱼鱼鱼完成签到 ,获得积分10
4秒前
XXJ发布了新的文献求助10
4秒前
haru9622完成签到 ,获得积分10
5秒前
逗逗发布了新的文献求助10
6秒前
7秒前
祈雨的鲸鱼应助蒸蒸日上采纳,获得10
7秒前
好的发布了新的文献求助10
8秒前
haru9622关注了科研通微信公众号
8秒前
ALY12345完成签到,获得积分20
8秒前
9秒前
未来发布了新的文献求助10
9秒前
9秒前
9秒前
活力的bird完成签到,获得积分10
10秒前
12秒前
lvshuye完成签到,获得积分10
13秒前
ALY12345发布了新的文献求助10
13秒前
小焮完成签到,获得积分20
14秒前
orixero应助ChiLi采纳,获得10
14秒前
高源伯发布了新的文献求助10
14秒前
斯文败类应助XXJ采纳,获得10
16秒前
17秒前
逗逗完成签到,获得积分10
17秒前
17秒前
lvshuye发布了新的文献求助10
18秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
19秒前
田様应助科研通管家采纳,获得30
19秒前
毛豆应助科研通管家采纳,获得10
20秒前
毛豆应助科研通管家采纳,获得10
20秒前
充电宝应助科研通管家采纳,获得10
20秒前
Owen应助科研通管家采纳,获得10
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
被划分给被划分的求助进行了留言
20秒前
爆米花应助科研通管家采纳,获得10
20秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470908
求助须知:如何正确求助?哪些是违规求助? 3063897
关于积分的说明 9086227
捐赠科研通 2754440
什么是DOI,文献DOI怎么找? 1511419
邀请新用户注册赠送积分活动 698420
科研通“疑难数据库(出版商)”最低求助积分说明 698291